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ABSTRACT 

A unified theory of alignment is developed which is 
founded on the two considerations common to all  alignment pro­
cedures: coordinate f rames and measurements. Al l  alignment 
procedures a r e  viewed a s  a c lass  of non-dimensional, vector­
direction-indication problems which effect a transfer of orien­
tation between two coordinate frames. Par t  of the present the­
sis is that the differences among v'arious approaches to the 
solution of the moving base alignment problem a r e  superficial. 
A discussion of the essential requirements for alignment is 
presented in the unified format. The roles of instrument e r r o r s  
and base motion a s  fundamental limitations on the alignment ac­
curacy a r e  developed in detail. A l l  performance indices a r e  
chosen a s  angular quantities which a r e  invariant under coordinate 
transformation. This facilitates a comparison and evaluation of 
techniques independent of the details of system mechanization. 
The necessary conversion of magnitude-sensitive instrument 
uncertainties to their angular equivalents is presented in detail. 

Purely geometric considerations yield a closed form 
solution for  the sensitivity of platform misalignment to the angle 
between measured vectors. It is also shown that the magnitude 
of a rotation specified.by the arguments of the principal direction 
cosines is independent of the skewness of the rotated coordinate 
frame. The magnitude of a rotation specified by Euler angles is 
found to be almost completely independent of the order of the ro­
tations. The very  important distinctions among ' 'measuring a 
vector, ' I  ' 'measuring a vectorPsmagnitude, " and "measuring a 
vector 's  direction" a re  quantified a s  a function of instrument 
e r r o r  parameters and the orientation of the vector with respect 
to the instruments. 

Application of the unified analysis is made to the following 
specific alignment techniques: Vertical Indication; Gyrocom­
passing; Star Tracking; Fix Monitored Azimuth; Vector Matching;
Gimbal Angle Matching; and Optical Comparison. It is shown 
for a multiple -system configuration that simultaneous measure­
ments of a single vector by multiple systems do not constitute 
multiple measurements of a common alignment parameter,  An 
additional measurement is introduced which takes advantage of the 
multiple system configuration and improves the alignment of 
each system. The extent to which operational considerations act 
a s  a pre-filter on the selection of an alignment scheme is dis­
cussed relalive to the car r ie r  -borne alignment of aircraft  navi­
gation systems. 
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ALIGNMENT O F  INERTIAL SYSTEMS 

ON A MOVING BASE* 

By Arthur  H. Lipton 
E l e c t r o n i c s  Research Center  

Cambridge, Massachuset ts  

CHAPTER I 

INTRODUCTION 

The preparation of an inertial guidance system for  
any mission requires : 

1. Establishment of a measurement reference 
f rame through initial alignment of the inertial 
measuring unit (IMU)9 and 
2 .  Establishment of initial conditions on 
velocity and position of the system in this frame. 

The initialization of a system while its carrying vehicle is 
stationary relative to  the earth has been the subject of a 
continuing effort to achieve greater accuracies in l e s s  time. 

This effort has met with considerable success in the past, and,
1 ** 

in fact, is currently showing significant progress.  

There has also been a recurring requirement to per­
form this initialization when the carrying vehicle is non- stationary 
relative to  the earth. The concept of initialization-in-motion 
is particularly attractive in weapon system technology. Several 
examples of vehicles which may be used to  transport an inertial 
system together with representative systems which specify 
(or specified) initialization while in motion a r e  an aircraft  
(Skybolt, Hound Dog), a train (Minuteman), an aircraft  ca r r i e r  
(F-111B) or a submarine (Polaris) .  

* 	 Submitted to the Massachusetts Institute of Technology, Department of 
Aeronautics and Astronautics in August 1966 in partial fulfillment of 
the requirements for the degree of Doctor of Science in Instrumentation. 

** Superscript numerals refer to numbered references in the 
bibliography. 



Unfortunately, success in initialization on a moving 

base has been much more limited than that on a stationary base. 

The initial alignment portion of the complete initialization task 
represents a particularly hard core problem. It is to  this 

initial alignment problem that this thesis is addressed, with 

special emphasis on the problems of aligning on a moving base. 

Alignment, for our purposes, is defined as deter­

mining the angular orientation of a set of fiducial axes fixed in 

an IMU with respect to  an arbitrari ly chosen set of reference 

axes. This determination is either an analytic evaluation of the 

relative angular orientation between two coordinate frames or a 
.Iprocedure which seeks to  achieve angular-coincidence between two 

coordinate frames. The ref.erence axes to which the IMU is 
aligned frequently represent a traditional geographic .orgeocen­
t r ic  coordinate frame. In several moving base alignment tech­

niques, however, the reference axes may well be the fiducial axes 

of a second IMU. Regardless of the particular f rames involved, 
the e r ro r  quantity (misalignment) represents an undesired angular 

discrepancy between the IMU's  fiducial axes and the reference 
coordinate axes. The most general description of misalignment 

is the "whole angle rotation" described in Chapter 11. A familiar 
and important specialization of this description is the vertical 

and azimuth specification of an IMU's misalignment relative to 

a geographic reference frame. 

Most alignments depend, to some degree, on measure­

ments of the IMU's inertial sensors 2 : accelerometers and gyros. 

Since these sensors are required for guidance and navigation 

subsequent to initialization, it is desirable to  utilize them for 

alignment. The accelerometers and gyros are able to effect 
alignment relative to the earth by identifying the ear thDsgravity 

2 




(g) and daily rotation ra te  (wIE) vectors. This identification is 
straightforward from a base fixed relative to the earth. Motion 
of a vehicle with respect to the earth, however, effectively de­

couples the system from these significant inputs by adding iner­
tially indistinguishable vehicle accelerations to and angular 
vehicle ra tes  to  wIE.  When this decoupling due to base-motion 
becomes severe enough to prohibit alignment by standard fixed-
base techniques, we have a moving base alignment problem. As 
used in this thesis, then, a moving base connotes a vehicle which 
undergoes sufficient translation and rotation relative to the earth 
to seriously affect the alignment problem. 

An examination of the literature 3 s  4 2  reveals two 
basic eng'geering approaches to the solution of the moving base 
a1ignmei.t problem. The first is an extension and/or modification 
of the techniques used in a stationary situation. The extensions 
and/or modifications effectively serve to recouple the system to  
the earth by processing (i.e. filtering, compensating) the moving-
base inertial measurements in a manner which obtains an  equiv­
alent fixed-base inertial measurement. Often as not, this requires 
additional non- inertial measurements with respect to the earth. 

The second approach is the development of a group of 
special techniques. Some of these techniques still  re ly  upon 
measurements of the systems' inertial sensors, but the measured 
quantities no longer have a unique a priori  meaning relative to the 
earth. In this case, some means of calibrating the measured 
quantity must be provided, usually in the form of a pre-aligned 
inertial measurement unit carr ied on board the same vehicle. 

Other special techniques introduce non- inertial alignment 
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measurements as a means of circumventing the base motion 

disturbance of inertial quantities. Some of these non-inertial 

measurements identify quantities which have an a pr ior i  sig­
nificance relative to an inertial reference frame (e. g., a star 
line-of-sight) or  even to  the earth (e. g., a range measurement 

relative to an earth-fixed point). Still other non-inertial 

measurements are merely a means of transferring the alignment 

of a pre-aligned on-board IMU to the inertial system of an 

aircraft o r  missile. 

This thesis emphasizes the homogeneity among 

the superficially distinct approaches to  the moving base alignment 

problem. Among other things, this facilitates the evaluation 

and comparison of the more significant techniques. The funda­

mental limitations of moving base alignment a r e  viewed as 
1)the e r r o r s  due to the measurement devices and 2)  the e r r o r s  
due to base motion interference with the measurement paths. In 

this context, base-motion interference relates not only to gross  
motions of the vehicle relative to the earth but also to  the 

non-rigid behavior of the vehicle structure. That these fundamerr 

tal limitations may be described in a uniform fashion regardless 
of the measurement technique is demonstrated in the thesis. The 
relative contributions of sensor e r r o r  and base-motion to a 

composite alignment accuracy a r e  developed, providing a basis 

for studying the trade-off between instrument e r r o r s  and disturb­

ing base-motions. 

Chapter I1 of this thesis is devoted to the development 

of a unified theory of alignment. This theory is founded on the 

two considerations common to  all alignment procedures : 

4 
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coordinate f rames and,measurements. Al l  alignment procedures 
a r e  viewed as the transfer of alignment between two coordinate 
frames by means of measurements on at least two non-collinear 

vectors. Individual techniques a r e  seen to vary only in the 
mechanization of particular measurements Coordinate f rame 
rotations are treated as whole angle rotations, the latter being 
developed in t e rms  of all the more usual rotational parameters. 
Measurements are discussed from the viewpoint of single­
degree- of-freedom sensors attempting to locate the direction 
of a vector input. Both magnitude sensitive and angle sensitive 
instruments a r e  corisidered. Base motion is treated as 
causing an angular deflection of the measured vector from a 
desired nominal direction.. The magnitude of the total platform 
misalignment resulting from independent measurements of;two 
non-collinear vectors is calculated as a ‘function of the angular

I 

uncertainties in determining the nominal direction of each of 

the vectors. 

Chapter III applies the analysis of Chapter 11 to the 
following specific alignment techniques,: Vertical Indication, 
Gyrocompassing, Star Tracking, Fix Monitored Azimuth, Vector 
Matching, Gimbal Angle Matching and Optical Comparison. The 
mathematical methodology not only provides a common basis for 
comparing techniques but also is seen in certain instances to be 
a simpler way of treating old problems (e. g. ~ Gimbal Angle 

Matching). Limitations on the use of each technique a r e  discussed 
a s  an aid in the appropriate selection of measurement techniques 
for individual situations. Individual conclusions a r e  necessarily 
limited 3n scope but taken together encompass the spectrum of 
moving base problems associated with acceptable carrying vehicles. 
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Chapter IV discusses two unique operational situations. 

The first is that of multiple missile systems carried aboard the 

same vehicle. The question addressed is whether the simultaneous 
alignment of all the systems is advantageous from the standpoint 

of improved individual system alignments. T.lie second situation, 
that of the carrier-borne alignment of aircraft navigation systems, 

demonstrates how operational considerations can be a very strong 

pre-filter on the selection of a particular technique. 

A summary and recommendations a r e  presented in 

Chapter V. 

Professor Walter Wrigley, the chairman of my thesis 

committee, has been a source of encouragement and helpful 

suggestions throughout my doctoral program. Detailed discussions 

with him and with Professors Y. T. Li, W.R.  Markey and 

J. E. Potter have contributed greatly to this thesis and a r e  sin­

c erely appreciated. 

I thank M r .  Kenneth Fertig for the encouragement and 

training received while under his supervision and for his continued 
interest in the author's progress. I a m  also grateful to my col­
leagues at the MIT Instrumentation .Laboratory and the NASA 
Electronics Research Center for their many helpful suggestions 

and discussions. I acknowledge with gratitude the understanding 

of my supervisors at NASA in providing conditions necessary for 
completion of this thesis. 



CHAPTER I1 

A UNIFIED THEORY OF ALIGNMENT 

2.1 Introduction 
The literature devoted to the alignment of inertial systems on 

a moving base (for example,. References 1, 2, 3, 4, 13, 24, 25, 27, 
30, 32) is primarily concerned with the analysis of distinct approaches 
and techniques. In fact, seven specific alignment techniques a r e  
discussed in detail in Chapter 111of this thesis. Yet no matter how 
different the various approaches to the solution of the moving base 
alignment problem may appear, this difference is superficial. There 
exists a large measure of homogeneity among the various approaches 
which is not evident from a survey of the literature. Properly em­
phasized, this homogeneity facilitates a comparison and evaluation of 
techniques which a preoccupation with disparity might otherwise mask. 
Hence the development and presentation of this unified theory of 
alignment. 

When reduced to its elementary form, the alignment problem is 
seen to be concerned with three major considerations: 1) the consi­
deration of coordinate f rames and coordinate frame transformations; 
2)the consideration of measurements made by sensors integral to a 
particular inertial system; and 3)  the consideration of information 
transferred from an  external sensor or system. 

The organization of this chapter is such that these considerations 
a r e  first discussed separately. This is primarily to minimize the 
framework necessaryfor analysis of the problem. It is not to imply 
that the three ( 3 )  considerations a r e  completely independent, for as 
measurements a r e  made to establish the alignment of coordinate 
frames, so does the alignment of coordinate f rames affect the ability 
of sensors to make accurate measurements. Dependencies such as 
this are developed as part  of the uniform e r r o r  analysis in the latter 
portion of the chapter. 
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2 . 2  Coordinate Frame Considerations 
The definition of alignment requires only two (2) coordi­

nate frames: a set of fiducial axes fixed in an inertial measur.ing 

unit (IMU) and an arbitrary set of referenceaxes. Yet the phy­

sical realization of an alignment procedure frequently requires 

the consideration of many more than two (2)coordinate frames. 

By minimizing the required number, one achieves a significant 

simplification in the associated transformations and manipulations 

It is possible to identify four reference coordinate frames 

which constitute the absolute minimum necessary to describe 

every moving base alignment procedure known to this author. 
This minimum results from considering the stable member of a n  
IMU as simply a rigid body. In order to permit evaluation of 

the alignment (i.e . ,  orientation or attitude) of th i s  stable mem­
ber, one need only visualize implanting a reference triad in the 
stable member. Except for certain purposes of mathematical 

convenience, the location of this reference set  does not have to 

have a special relationship to instrument axes, computational 

axes, or the navigational reference frame. It will ,  however, or­
dinarily be chosen as an orthogonal set. 

Figure 2 . 1  shows the functional relationships for the r e ­

quired reference coordinate frames. In addition, because the 

alignment process is always based on a set of measurements 

and sometimes aided by a transfer of external information, the 

alternate measurement paths required to describe the complete 

alignment problem a r e  also indicated. Of the two coordinate 

frames required for the definition of alignment, the fiducial axes 

of .an IMU form the dependent reference frame of Figure 2 . 1  and 

the arbitrary set of reference axes form the independent refer­
ence frame. 

2 . 2 . 1  Independent Reference Frame~­--_ - -~ 

The independent reference frame is a purely ana­

lytical coordinate frame. As such it is the only required coor­

dinate frame which is not considered rigidly attached to the stable 

8 
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Figure 2- 1 Functional Diagram of Coordinate Frames and Measurement Paths Required 
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member of an IMU. It represents the ideal orientation of any of its 
physically mechanized counterparts and is therefore the ultimate 

gauge of how well a system has been aligned. The orientation chosen 

for the independent reference frame usually - w i l l  be closely related to 

the geometry of the space chosen for navigation and guidance of the 

carrying vehicle. The traditional independent reference frames, such 

as geographic, geocentric, and inertial a r e  described in detail in the 
'5, 6, 7,8literature 

2 .  2 . 2  Dependent Reference Frame-~ 

Each of the dependent reference frames indicated in 

Figure 2 . 1  is associated with one IMU which is to  be aligned. The 

multiplicity recognizes that a single vehicle might ca r ry  several sys­

tems which require alignment. In the event that these systems a r e  
different, the dependent reference frames may be non-identical. Con­

versely, identical dependent frames a r e  expected for identical systems. 

Chapter I11 discusses several techniques whereby each dependent frame 
is aligned individually. Chapter IV considers the simultaneous align­

ment of several dependent frames. 

The dependent frames a r e  reference frames only inso­

far as they serve as a measurement reference for the IMU during a 

mission. They a r e  dependent because they must be aligned with r e ­

spect to some other reference system. In particular, it is desirable 

to align the dependent system by a ser ies  of measurements made with 

respect to the independent reference frame. This requires informa­

tion which can be sensed by the instrument associated with the depen -

dent reference frame to have a unique geometrical relationship to the 

independent reference frame. For example, the ear thDsgravity vector 

( g )  and angular velocity vector (W ie) a r e  well defined in the geographic 
frame. If their orientation with respect to the dependent frame can be 
established by measurements performed in the dependent frame and 

compared to the known orientation in the geographic frame, the align­

ment of the dependent frame to the independent frame follows directly. 

This particular procedure is known a s  gyrocompassing. It depends 

upon the capability to measure and W ie accurately in the dependent 

reference frame. 
10 




2.2 .  3 Intermediate Reference Frame~ _ _ _ -
When measurements suitable for alignment can­

not be made directly with respect to  the independent reference 
frame, an indirect se r ies  of measurements may be used. For 

' Ithis purpose a substitute" independent reference frame, i. e. 
one which "remembers" the independent reference frame, is 

provided. This is the intermediate reference frame of Figure 

2. 1. The use b f  active intermediate reference frames for mo­
ving base alignment is perhaps the most significant dividing 
point between fixed base and moving base alignment procedures. 
Although intermediate reference frames a r e  often necessary in 
both fixed and moving base alignment to circumvent physical 
disturbance of the measurement, the fixed base procedure will  
usually employ a static type of intermediate reference. In 
many proposed moving base alignment techniques, there is made 
available on board the vehicle an IMU which has previously been 
aligned with respect to an independent reference frame and to 
which it is desired to align one or more additional platforms. 
In other words, it is desired to transfer the alignment of the 
intermediate reference frame to the dependent frame. In this 
case the alignment capability is measured with respect to the 
intermediate reference frame while the total alignment accuracy 
must include the ability of the intermediate system to remember 
the orientation obtained from the independent reference frame. 

A transfer alignment of the type considered above is some­

times called a Master-Slave alignment. This name derives from 
mechanizations where the orientation of the dependent system 
(slave) is physically slaved to match the orientation of the inter­
mediate system3 , but is now popularly applied to any transfer 
method 5 Gulland4 has discussed a naval application involving 
transfer of the SINS coordinate reference to a remote fire-
control device aboard,the same vessel. Nauman and Oestreich3 

and O'Donnell5 indicate the interest in a transfer of coordinates 
f rom an airborne auto-navigator to a remote fire-control device 
aboard the same aircraft. 

11 




2.2 .4  Transfer Reference Frame 
When it is not possible to  make suitable measure­

ments between dependent and intermediate reference systems, a 
transfer reference frame (Figure 2.1) may be used. The proposed

10carrier-borne alignment of the F-111B navigation equipment 

employs this technique. The transfer reference frame is an active 

inertial platform which is first aligned to  the intermediate system. 

Then it is physically transported to where its alignment can be 

measured by and transferred to  the dependent reference frame. 

Although required to remember its orientation for a much shorter 

time period than the intermediate system, the transfer system and 

e r r o r s  introduced by the alignment procedure a r e  similar to  those 

considered for the intermediate system discussed in Section 2. 2. 3. 

2. 3 Measurement Considerations 

2. 3. 1 Vectorial Nature of the Measurements 
All  alignment techniques depend on the ability to ac­

curately measure naturally existing or artificially introduced 

quantities. The point of greatest significance to the unification 
of alignment studies is that regardless of the fact that the mea­
surement of these quantities may proceed by inertial, optical, 
electromagnetic or other means, the various measurements 

have a common characteristic of singular importance: 

Every quantity measured for the purpose of dlignment is 

vectorial in nature, 

The vectorial nature to which we refer  is the particular concept 
of a vector a s  a geometric entity having characteristics of direc­
tion- and magnitude. Although every measured quantity relevant 

to  alignment may, in fact, be properly described a s  a vector, the 

determination of just  its direction supplies conditions which a re  

mathematically sufficient to determine alignment. The determination 

of magnitude is not a mathematically necessary condition but it may 

be a practical necessity depending upon the nature of the measured 

quantity and the sensors employed. When magnitude measure­

ments a re  made, they a r e  for the purpose of determining the 

12 




directional parameters of the input quantity. This concept is 
sufficiently important to warrant amplification by example. 

Consider, first, the fixed base gyrocompassing 

mode of alignment. Here the system attempts to establish its 
orientation by determining the vectorial direction of each of 
two physical quantities: gravity (2)and the earth 's  daily ro­
tation (W ie). Each of these quantities is a vector. The instru­
mented measurements (using accelerometers and gyros respec­
tively) determine the vector directions in one of two ways. 
Either they make the best possible estimate of magnitude com­
ponents of the quantity or they seek the null magnitude plane 
of the quantity. This presents a c b i c e  of four possible measure­
ment combinations, but in each case the full  vector nature of 

gravity and earthrate is being utilized. 

Optical measurements provide an example of an 
alignment measurement which is not a complete vector mecha­
nization but whose basis is indeed vectorial. Optical, systems 
(such a s  auto-collimators) a r e  concerned with the line of sight 
from the instrument to  an object. This line of sight may be 

prbperly considered to  represent only the directional aspect of 
the position vector from the instrument to the object, where 
in order to measure rotation of the object about some axis the 
position vector must terminate in a point of the body off the rota­
tional axis. Angular measurements can determine the direction 
of this position vector (and hence the alignment between object 
and instrument) without recourse to magnitude measurements. 
In optics, magnitude considerations relate to the energy of the 
electromagnetic wave. In this sense, the magnitude of the po­
sition vector does weigh heavily on the practical application of 
optical instruments. Other parameters of the wave, however, 
car ry  the intelligence related to direction finding. 

It may now be seen that examining the alignment 
problem. in t e rms  of a vector measurement problem permits a 
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clear understanding of the limitations on the process of moving base 

alignment implied by the measurement capabilities. It is primarily 

in the choice of the vectors and the corresponding form of the 


measurement that the techniques discussed in the literature 


differ . 

2. 3. 2 Two Vector Requirement 

~~ .~ 

The determination of the angular orientation of 

an inertial measuring unit by vector measurement requires at 
a minimum two non- collinear:%vectors whose orientation is known 

with respect to the desired system attitude. This may be proved 
simply by both mathematical and physical arguments. 

Consider a misalignment between the dependent 

and independent frames of Figure 2-2 .  A relationship between 
the observations of the vector V in each frame is 

2. 3-1 

where the vector superscripts indicate coordinatization in the 
irespective frames and the rotation matrix Rd car r ies  the d­

frame into the i-frame. Visualize the misalignment a s  being 
developed on an incremental basis beginning with the two frames 
coincident and having 7remain constant in the i-frame. Then 
we may write 

= o  2. 3-2 

from which 

+ In the general case, one merely requires a pa i r  of skew vec­
tors .  Because a center of measurement is defined in the IMU, 
the measured vectors must intersect and define a common plane. 
Hence the requirement for non-collinear vectors. 
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F i g u r e  2- 2 Evaluating Misalignment (de)Between I n d e p e n d e a  (i) 
and Dependent (d)  Frames by Measurement  of a Vector (V) 

lo) Ib )  

Has 3 degrees of freedom about Has one degree of freedom about 
measured vector v.any three independent axes.-

-
V 

Orientation fixed with respect to two vectors, 
0 degrees of freedom. 

Figure 2 - 3  A P h y s i c a l  Argument  to Establish the Two-Vector Requi rement  
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or 
-d - v-d = R~d A R ~Td 2 . 3 - 3  

where we choose t - 0  a s  the instant when the d-frame and i­

frame are coincident. We ask now whether these observa­

tions of the single vector v a r e  sufficient to evaluate uniquely 

the misalignment between the frames. 

Under suitable restrictions (which have been 

discussed by many authors 11’ 2’ 3, the misalignment may
-

be represented by a vector angle de.  The direction of d e  gives 

the axis about which the misalignment w a s  generated, while 

the magnitude of de specifies the amount of rotation about this 
axis. Using the vector angle concept, an identification of the 

right-hand side of Equation 2.  3 - 3  in t e rms  of a vector cross  

product l 4  may be made. 

2 . 3 - 4  

Substituting 2.  3 - 4  into 2 .  3 - 3  gives the desired expression, 

coordinatized in the d-frame 

2 . 3 - 5  

The non-simultaneous measurements of 2. 3 - 5  may be replaced 
by equivalent simultaneous observations of the same vector 

from different frames, since 

-i= v  2 .  3-6 
-d II t = O  in Equation 2 .  3 -5  is, therefore, a represen-The t e rm V 

tation in the d-frame of vi. While the substitution of 2 .  3-6  into 

2 .  3-5  is rigorously proper, the resulting equation is subject to 
mis-interpretation and therefore is not written explicitly. 
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The implication of Equation 2. 3-5 is that only 
the component of de perpendicular to can be evaluated by mea­

surements of v. Any component of de which is parallel to v r e ­
mains indeterminate after a measurement of v. The evaluation 
of this parallel component requires measurement of information 
which is linearly independent of 7in three-space, hence has some 
component orthogonal to 7.Because the additional information 
must here be described a s  a vector, the requirement for linear 
independence is met by selecting the second vector to be non­
collinear with v. The component of the second vector which is 
normal to v contains the required intelligence; the component 
parallel to v supplies redundant information which may or may 
not be used to improve the estimate of the de component perpen­
dicular to v. Note in this connection that a null-magnitude com­
ponent of a vector is equally a s  signficant for  direction indication 
a s  a non-zero projection. However, ?he greatest,,sensitivity for 
evaluation of the parallel component of de obviously corresponds 
to choosing the second vector perpendicular to  7. 

A simple physical argument establishing the 
two vector requirement proceeds a s  follows. The stable member 
of an IMU, considered a s  a rigid body, has three degrees of ro­
tational freedom (Figure 2 - 3  a). The determination of the bodyss 
orientation with respect to one measured vector is entirely ana­
logous to fixing that vector in the body, much a s  an axle (Figure 
2 - 3  b). The original three degrees of freedom a r e  thus reduced 
by two, leaving only the single degree of rotational freedom about 
the originally measured vector unspecified. The required non­
collinear vector (Figure 2- 3 c), by supplying a measurement ortho­
gonal to 7,fixes the orientation of the rigid body. 

The visualization of a measured vector a s  an axis in the 
body, when specialized to the case of a coordinate set "straddling" 
a vector input, is of central importance in developments to follow. 
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It is emphasized that by measuring two non-collinear 

vectors it is possible only to uniquely specify the orientation of the 

dependent reference frame with respect to the vectors. The orienta­

tion of the vectors must be known with respect to the desired system 

attitude (as represented in the independent, htermediate  or transfer 

reference frames)  in order to complete the measurement portion of 

the alignment. In most cases it is interesting to make a detailed ex­

amination of the accuracy with which a system assumes a new orien­
tation from a measured orientation only when the dynamics of this 
process affect the measurement problem itself. 

An important violation of the non- collinear vector 

requirement occurs when a gyrocompassing system is operated in the 

polar regions, The often discussed singular behavior of such systems 

has a simple physical basis in the near-collinearity of and w ie. 
Precisely at the poles, where and w ie become collinear, the vec­

tors  no longer provide sufficient information to determine direction 
uniquely. 

Since each measured vector provides two of the three 

pieces of information required for alignment, a mathematical over-

specification of alignment results from the use of two non-collinear 

vectors. This leads quite naturally to the possibility of measuring 
more than two vectors in order to  take advantage of this redundancy. 
In fact, measuring a total of three vectors, no two of which a r e  colli­

near, would provide exactly twice the conditions mathematically suf ­
ficient to determine alignment; however, this approach has little 

practical appear a t  present because of the difficulty involved in instru­

menting even the two required vector measurements. .The specific 

problem of employing more than two vectors is not pursued in  this 
thesis, but much of the forthcoming analysis is applicable to this concept 

In general, the requirement for  two non-collinear 

vectors cannot be met by two vectors of the same type if the measure­

ments a r e  made simultaneously, The exception to this is represented 

by the direction vectors involved in optical measurements. This is 
because two physical vectors with the same units of measure wil l  add 
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vectorially and appear to a measuring instrument a s  a single r e ­
sultant vector . For example, although s ie and another non­
collinear angular velocity vector may Exist at the same time, 
they appear as just a single vector to 'he gyroscopic sensors. 
For a simultaneous measurement we must therefore require 
(with the exception noted above) that the two vectors employed be 
distinguishable on a dimensional basis in addition to being non­
collinear. 

Non-simultaneous measurements make it pos­
sible not only to use two different vectors of the same type 
(providing they do not exist simultaneously) but to have a single 
physical vector satisfy the two vector requirement. This requires, 
however, that the direction of the vector change a s  a function of 
time in both the reference frame to which we are aligning and 
the dependent frame being aligned. By way of explanation, con­
sider a different viewpoint of fixed base gyrocompassing. If a 
system's gyros are used to maintain an inertially fixed orien­
tation, observations of the local gravity vector display a uniform 
change of direction relative to the system. With the aid of a clock, 
these observations of a single vector provide sufficient informa­
tion for alignment relative to an inertial independent reference 
frame. The important point is that the physical vector (g)has r e ­
mained constant; only a carefully calibrated apparent direction 
change has occurred. It is this apparent change which permits 
alignment. 

Vector matching (Section 3.  6 )  provides an exam­
ple where non- simultaneous measurements of similar vectors 
permit alignment. The master and slave systems a r e  both aligned 
t o  with the vehicle in a non-maneuvering condition. The systems 
a r e  then placed in a vertical-hold mode while the vehicle maneuvers 

in order to generate a significant horizontal acceleration. Although 
the total specific force vector now lies somewhere between 2 and 

1 'the horizontal, our calibration" of at a prior t ime period allows 
us to complete the alignment based upon the horizontal acceleration 
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only. Had we not separated the measurements in time, the 
components existing at  one point in t ime would be indistinguish­

able. 

It is crucial in these mechanizations that a real 
or apparent change of vector direct,ion occur in both the depen­
dent and independent frames. If the vector orientation were to 
remain fixed with respect to either coordinate frame, there 
would be an unresolved ambiguity in that f rame's  orientation 

about the vector. An ambiguity associated with either frame, 

is, of course, an alignment uncertainty between the two frames. 

In order for the non-simultaneous vector technique to be con­

sidered, the reference frame must be capable of monitoring 
the vector's direction change very accurately. It should be 

obvious now that the actual change of vector direction may be 
accomplished either by rotating the reference frame and de­
pendent frame (called "slewing") with respect, to a spatially 

fixed vector or by spatially fixing the coordinate frames and 

turning the vector. 

Tk foregoing discussion of the measurement 

problem has indicated the principal choices available for meeting 

the minimum vector measurement requirement but has not been 
concerned with the quantities the input vector represents. If 
one counts the combination of ways available to meet the two 

vector requirement while also distinguishing the vector quanti­

ties on the basis of dimension (i.e. position, velocity, accele­
ration . . . ), the selection of an appropriate solution of the 

alignment problem is already seen to be a formidable task. 

This selection is further complicated by the external measuring 

equipment and information transfers depicted in Figure 2.1.  
Separate f rom the measurements made by sensors integral to 
the inertial system under consideration, information may also 

be transferred to the system from a remote sensor or system. 
This information is considered separately from primary mea­

surements not only because its role is usually auxiliary but also 
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because the separation between measurement points allows the 
information link to  be corrupted by base motion interference effects. 
The important point to recognize, and which renders the general 
analysis of moving base alignment tractable, is that because every 

input is a vector quantity, the e r r o r  analysis may be treated by 
simply relating fixed directional indicating capabilities to a resul­
tant alignment accuracy. 

The inaccuracy of the measurement processes, has 
two major sources: the inherent e r ro r s  of the measuring instru­
ments and the fact that a l l  measurement paths a r e  subject to 
interference from base motion. The success (or failure) of 
present alignment procedures can be said to depend largely on 
how well base motion is either 1)circumvented, 2 )  measured, 
or 3) predicted and filter’ed, since the instrument quality is usually 
taken a s  a fixed item. The approach of this thesis is to  show the 
tradeoff required between the two e r ro r  sources in order to achieve 
a desired alignment accuracy. 

Based upon a composite figure of merit  derived 

for each measurement system it is possible to relate the ex­
pected accuracy of alignment to the expected aceuracy of measure­
ment. This includes the necessary conversion of linear measure­
ments and magnitude measurements to their angular equivalents. 
The derivation of the composite figure of merit w i l l  be shown in 
what follows. 

2 . 4  Error  Analysis 

2.4.1 Angular Quantities 

In view of our basic definition of alignment, it is 

natural to speak in t e rms  of e r ro r  angles as an index of per­
formance. Al l  e r r o r  sources contributing to the misalignment 
of a dependent reference frame may be described in te rms  of 
misalignments between appropriate pairs of the four basic coor­
dinate frames of Section 2 . 2 .  Additional coordinate systems a r e  
used as analytical aids when necessary but a r e  not central to the 
problem. 
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The magnitude of any quantity properly described 

a s  avector is invariant with respect to  the coordinate transforma­

tions necessary to  characterize it in a particular reference coor­

dinate system. The inputs to  alignment measurement processes, 

a s  vectors, certainly have this attribute. If the e r r o r s  resulting 
f rom a study of the measurement processes can be shown to  have 

this attribute also, then to  a very useful degree the alignment 

problem may be studied free of the geometry involved in specific 

hardware mechanizations. Because of the increased emphasis on 

inter-platform phenomena associated with the moving base align­
ment problem, the choice of variables influences both the com­

plexity involved in the analysis procedure and the insight afforded 
by the results. It is desirable that the variables chosen be appli­

cable to all  coordinate systems and thereby be independent of any 
particular mechanization. 

While angles cannot be described properly a s  vec­

tor  quantities, the simplest description of a misalignment angle 

nonetheless has invariant properties under ccordinate transforma­

tions. The simple description referred to reduces any defined 

difference in the angular orientation of two bodies to a single ro­
tation about a specific axis. That this reduction may be achieved 

is a consequence of Chasle's Theorem12 regarding the generalized 
motion of a rigid body and has been discussed in detail in Ball 's 15 

treatise on screw motion. 

In order to distinguish the single rotation, aj from 
its coordinatized representation or the ser ies  of distinct rotations 

employed to arr ive at  a final. orientation, it wi l l  be called a "Whole 
IIAngle Rotation. Although has the vector characteristics of 

magnitude and a directional axis, these properties a r e  only ne­

cessary to establish the whole angle rotation a s  a geometric entity 
in space whose representation is independent of particular coor­

dinate systems. It wil l  be helpful for the reader to visualize 
the alignment process a s  one of finding an axis about which one 
1 1turns" the dependent reference frame by a finite angle in order 
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to achieve angular coincidence with the  reference coordinate set. 

This is schematically represented in Figure 2-4.  The depen­

dent reference frame, d, and the rectangular parallelopiped to 
which it is attached a r e  rotated in space from their identical 
counterparts, the reference frame, r, and its associated 

parallelopiped. The alignment problem seeks only to  achieve 

angular coincidence between the d and r frames. This may 

be done in several  ways. 

In all cases of Euler type rotation, the following 
information must be recorded: 1)the body which is rotated; 2 )  

the coordinate f rame in which the rotations a r e  specified; 3) the 
order of the three required rotations; and 4) the magnitude of 
each of the three rotations. On the other hand, i f  the whole an­
gle representation of alignment is employed the following must 

be recorded: 1)the body which is rotated; 2 )  the coordinate frame 
in which the axis is specified; 3) the axis of rotation; and 4) the 
magnitude of the rotation, a. In terms of simple I t  bookkeeping", 

the Euler rotation requires keeping track of eight pieces of infor­

mation; the whole angle rotation requires only five. 

The angle @, in addition to being an easily visu­

alized quantity, describes the magnitude of the misalignment by 
a single number. Until one requires a coordinatized representa­
tion of this angle, the location of the rotation axis with respect 
to a particular reference coordinate set is unimportant. The mag­
nitude @ is, in fact, an upper bound on the magnitude of the angle 
4i between any two corresponding misaligned axes. An original 
proof of this bound follows. The geometric definition of the $i is 

depicted in Figure 2-5 .  4 1, $2, and 9, a r e  there seen to be the 

arguments of the principal direction cosines. 

That CP is an upper bound on the 4 .  may be proved
1 


with the help of Figure 2-6 .  There the d and r coordinate systems 
a r e  represented by sets  of unit vectors, r.and 6.. Beginning with

1 1 


the d and r frames coincident, the d frame has been rotated 
through the angle @aboutthe axis indicated to achieve the 
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orientation shown. Following, for example, the dl and r1 axes, 

they a r e  separated by the angle 4, as a result of rotating the en­
t i re  d-coordinate frame by @ relative to the r-frame. In general, 

9, = cos - 1 - . -di) i = 1, 2, 3 2 .4-1(ri 

The rotation of dl is seen most easily by decomposing r1 (co­
inciding with the non- rotated d1) into a component perpendicu­

la r  to the axis of rotation, (r1)
I’ 

and a component parallel to 

the axis; ( r l) ,, . When the d-coordinates undergo the rotation 
4, (F1I1 rotates through the angle @ to the position indicated by 
(dl)Iwhile (Fl) ,, remains fixed. The displaced dl axis is then 

constructed by the vectbr sum of (Fl) , ,  and ( a l ) ,-. 
The geometry of Figure 2.  6 can be used directly 

to establish that bounding @indeedsets an upper bound on $l. The 
angles @and41a r e  each apex angles of two isosceles triangles 

which have the common base b. These triangles a r e  drawn in 

the same plane in Figure 2 .  7 for clarity. The triangles have 

sides [F,, ?I1] and L(Fl)-, respectively. Since I rlI = 

dl = 1 and (r ) 1 I =  I (al)- il we see immediately that1 ­

@ 2 $1 2 . 4 - 2  

where the equality holds when Fl is perpendicular to the axis of 
rotation. 

TO obtain an explicit relationship between @ and 4, 
apply the law of sines to both triangles (Figure 2. 7)  

sin.@ sin CY 
2 .  4-3a 

b -- 1 %  I 2.4-3bsin $I 
1 

sin p 
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Figure 2 -7  Isosceles Triangles of Figure 2-6  Drawn in Same Plane 
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Recognizing that 

Qs i n @  = s i n -2 
1 ( T  - Q )  = c o s y  2.4-4a 

yields 

sin % = l(FILl sin 9. 2.4-52 I %I 2 

If we define + i  a s  the angle between the axis of the whole angle 

rotation and the coordinate axis of interest (in this case 2;'. then 

2 .4-6  

Since the foregoing development holds independent of the coor­
dinate considered, Equations 2 .  4-5 and 2. 4-6 give the general 

result 

'i @
sin -2 = sin +.

1 
sin -2 2 . 4 - 7  

Figure 2 .  8 shows 4i a s  a function of for fixed values of +.. 
1 

For very small  4, and the linear relationship 2. 4-8 holds. 

2.4-8 

r& as an exact function of the di is obtained by 
squaring Equation 2.4-7 and summing over i 

i=1 i=1 
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= 1 and f (cos2 + + sin2 i) = 31 gives the desired relationship 

i =1 

2.4-9 
i=1 

When the small  angle approximations a r e  valid for @ and 4., Equa­l 

tion 2.4-9 or Equation 2.4-8 yields 

2.4-10 

The relationship 2.4-10 wi l l  be derived again further on in this 

section, without resor t  to the geometry of Figure 2. 6. From the 
result 2.4-10 one may straightforwardly deduce Equation 2.4-2 

but not the explicit relation 2. 4-7. However, the forthcoming de­
rivation demonstrates some important properties afforded by the 
use of the e r r o r  angles $i. 

First the relationship of the magnitude of the whole 
angle rot ation to  several  coor dinatized representations commonly 

used in the analysis of inertial navigation systems wil l  be computed. 

This is most easily accomplished by using matrix representations 
for the rotations. A dependent coordinate set, d, and a reference 

coordinate set, r, may be related by 

2.4-11 

where R is a three-by-three orthogonal matrix whose elements 

are functions of the angular changes required to  rotate the d­

frame into coincidence with the r-frame. The reduction of R to 
a form which relates the r and d frames by an equivalent whole 
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angle rotation proceeds by a similarity transformation 12 ,16  us­
ing a derived matrix S and its inverse S -1 

R' = S R S-l 2 .4-12  

This equivalent rotation can be made of the form 

permitting evaluation of the magnitude of the whole angle rotation, 
@, from knowledge of the trace of R' 

t r  R' = l + 2 C o S @  2.4-14 

Because the t race of a matrix is invariant under a similarity 
transformation, t r R = t r R' and therefore 

t r  R = 1 + 2 c o s @  2.4-15 

By 2.4-15, the magnitude of the whole angle rotation,@, is evalu­
ated from the t race of the matrix describing the desired rotation. 
This expression wil l  be utilized frequently. 

Consider now the set of Euler angles corresponding 
to  the rotations of a typical three-gimbal inertial system. A par­

ticular set of rotation angles, �Ii, and an order of rotation a r e  
defined in Figure 2.9. Note that this set  is the same a s  the tra­
ditional yaw, pitch and roll  of aircraft  axes if d3, d2 and dl cor­
respond to  the aircraf t ' s  vertical, transverse and longitudinal 
axes respectively. The R matrix of Equation 2.4-11 is, for this 
order of rotation,, the matrix product 

R =  L M N  


where the abbreviations employed a r e  Si = sin 0'. and Ci = cos Oi.
1 
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Figure 2-10 Permutations of the Order of Rotations for 
Eulerian Transformation of Figure 2-9 
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For the same values of the angles el, O2 and 83 
there a r e  five orders  of rotation different f rom that described 
by Equation 2 .  5-16 and Figure 2. 9. The cyclical permutations 
of Figure 2 . 1 0  portray the entire selection of rotation sequences 
(Equation 2.4-16 is included in the cycle of Figure 2.10 a). 
Although the matrix products LMN, MNL and NLM a r e  unequal 
in general, the t races  of these products a r e  equal. The trace 
of the t r i p l e  matrix product LMN may be written in te rms  of 
matrix elements as 

t r  L M N =  11 l i j  jk nki 2.4-17 

i j k  

that of MNL as 

t r  M N L  = 11 mij  njk 'ki 
i j k 

= 12 1 'ij jknki  2.4-18 

i j k 

and so forth, proving that 

t r  L M N  = t r  M N L  = t r  N L M  2 .4 -19  

It may similarly be shown that 

t r  L N M  	= t r  N M L  = t r  M L N  

= 2 1),l i j  njk "ki 2.4-20 

i j k  

and therefore 

t r  L N M #  t r  L M N  2.4-21 

By Equation 2 . 4 - 15, any matrices with equal t races  

describe equal magnitude rotations, ch. We have thus shown that 
the magnitude of the whole angle rotation for  any permutation 
within the same cycle of Figure 2. 10 is identically the same. 
Only the sense of the permutation affects the magnitude of ip, not 
the explicit order of rotation. This result is independent of the 

magnitudes of the Bi. 
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The t race corresponding to the rotations of Figure 

2.10a is (fromEquation 2. 4-16) 

t r R = t r L M N = COS e cos e2 + COS e2 COS e3  
+ cos e3 cos el - sin el sin 82 sin 83 

2 . 4 - 2 2  

while that corresponding to the rotations of Figure 2 .10b  is 

t r R = t r L N M = cos el cos O2 + cos O2 cos O 3  

+ COS COS el + sin �I1sin 82 sin 83 2 . 4 - 2 3  

Equations 2 .  4-22 and 2. 4-23 differ only by the sign of the 

sinel sin 82 sin O3 t e rm.  For  the case of a l l  Oi small enough 
to neglect t e rms  of order three and higher, the t races  become 

equal and reduce to 

8t r  L M N Z  t r  L N M  ~ 3 - 2 - e 2~2 - e 3  2 .4 -24  

which with Equation 2. 4 -1  5 gives 

a =, el 2 + e22 + e32 2 . 4 - 2 5  

The small  angle result 2. 4-25 is completely inde­

pendent of the order of the Euler rotations about the dl, d2 and 
d3 axes. This agrees with the well known result that the angles 
commute when dealing with llsmall" rotations, Markey and 

Hovorka' distinguish this situation by considering the I t  correc­

tion angles" C x ~C
Y' 

Cz in their work. From 2. 4-25 we imme­

diately wr i t e  

@ = J C 2 + C  2 + c z2 2 .4 -26  
X Y 

For  e r r o r s  specified by an azimuth e r r o r  angle, ea, 
and a vertical e r ro r  angle OV, 

2. 4-27 
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While the t race of the rotation matrix has been 
shown to be relatively independent of the order chosen for a given 
set  of Euler angles, it is quite depender$ on the combination of 
Euler angles selected. Figure 2.11. results from the following se­

quence of rotations: Beginning with the r and d frames coincident, 
rotate the d-frame first through Q 3  about d3’ then through O 2  about 
the displaced dl axis, and finally through el about the displaced d3 
axis. The R matrix for this rotation has the form 

where the L and N matrices are those of Equation 2 .4 -16  with the 
appropriate substitution of trigonometric arguments indicated in 
Equation 2.4-28.  The t race of this rotation happens to be the 
exact t race for every permutation of rotational order. It is given 

by 

t r R = COS el COS e3  + COS e2 + COS el COS e2 COS e3 
- sin sin 83 cos O2 - sin O1 sin 83 2.4-29 

which for small angles results in 

elIP = J 2+ e2 2 + e32 + 2e1 e 3  2.4-30  

Relations between @ and other Euler rotations can be evaluated 
similarly . 

The previous result 2.4-10  can now be derived very 
easily, The arguments, 4.’ of the principal direction cosines 

1 
were defined by Equation 2.4-1. as 

-oi = cos 
-1 (Fi . di) i = 1, 2, 3 2 . 4 - 1  

Because the dot products Ti . 3.a r e  precisely the diagonal te rms
1 

of the R matrix relating the d and r frames, the t race of the R 
matrix is written directly (equation 2. 4- 31)  

t r R = cos 6, + cos q 5 2 +  cos q53 2 , 4 - 3 1  
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Figure 2- 12 Description of Measurement E r r o r s  
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The expression 2 . 4 - 3 1  is exact and has been obtained without 
regard for the rotations or order of rotations involved. Any set 
of 4i describe a unique magnitude misalignment whose whole 
angle equivalent is -given by 

cos 4l + cos 4, + cos 43 -1 
cos @ = 2 2.4-32 

which reduces to Equation 2.4-10 for the small  angle case. 

@=p/) ,  2 + 4 2  2 + 4 3  2 2.4-101 

In addition to the ease with which Equation 2. 4- 31  

is written when dealing with the $i, this choice of e r r o r  angles 
is such that the results 2.4-32 and 2.4-10 hold exactly even when 
the coordinate systems under consideratiori a r e  not orthogonal. 
This result is useful in relating misalignments to measurement 
capabilities, particularly when a non-orthogonal reference frame 
is established with two of its axes along the directions of the two 
non-collinear vectors measured for alignment. Since measure­
ment capabilities a r e  determined as the ability to locate the direction 
of a vector, the individual misalignment evaluations remain un­
changed as the angle between the two vectors changes. In addi­
tion, i f  a d-frame is chosen coincident with instrument axes, 
the form of the e r r o r  analysis is relatively insensitive to input 

axis misalignment when carried out in te rms  of the 4i. 

To prove the independence of @fromorthogonality 
of coordinate frames, consider the rotation of a non-orthogonal 
frame (n) to  an orientation (nl) such that 

4. 

nl 	 = R".n 2.4-33
.*. 

where the aster isk distinguishes R1'as a non-orthogonal matrix. 
This can be reduced to the equivalent rotation of an orthogonal 
coordinate set (0)defined by 

o = A n  


0' = A n1 2.4-34  
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The rotation between triads is 

(A is guaranteed non-singular provided no two axes of n are 
collinear. ) The similarity transformation and trace arguments 

of Equations 2.  4- 1 2  through 2. 4- 15, when applied to Equation 
2.4-35 yield 

J­

t r S(AR
:$ 

A 
-1 s-' = t r AR"A-' = t r R*'*= 1+2 cos e 

2.4-36 
>R

The t race of R is most easily expressed by choosing the angles 

between axes, 4,. as the independent variables of R". Then 

2.4-37 

where the definition of Equation 2.4-1 must be modified to read 

2.4-38 

The distinction is simply that the 9i must be the angles between 

corresponding axes of two identical coordinate systems. If the 
d and r coordinate sets  a r e  defined alike, then Equation 2.4-37 
is precisely Equation 2.4-31 andEquation 2. 4-38 is the same as 
Equation 2 , 4 - 1 .  

To quantify this distinction, consider two coordinate sets  
(n) and (n,) which a r e  both non-orthogonal as well  a s  non-identical. 

They a r e  related by 

n = B n l  2.4-39 

which establishes a coincident reference orientation of the n­

frame and an n-equivalent nl-frame. Keeping the n-frame fixed, 

rotate the n1-frame to a new orientation n1 

"11 = R::: 2 .  4-40 
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* 
where R is now the rotation matrix between non-orthogonal, non­
identical frames. Using 2. 4- 39 

>: 
nlt  = R B nl 2 . 4 - 4 1  

so that 

1 + 2 cos e =t r (R”B) 2.4-42
* 

The t race of R B is a simple sum of the principal direction co­
sines only if B is diagonal, corresponding to  the n and n1 frame 
identical. 

The c $ ~wil l  henceforth denote angled between 
axes of identical (but not necessarily orthogonal) coordinate frames 
to permit evaluation of 4 from 

cos 4 + cos 4, + cos $3 - 1 
cos 4 = 1 2 2 .4 -32  

or 

4 =6­y i i  2.4-10  

as applicable. 

The foregoi,ng analysis of angular quantities 
which conveniently describe coordinate frame transformations con­
cludes the first portion of the e r r o r  analysis for this unified 
theory of alignment. As depicted in Figure 2-1, every align­
ment procedure involves the transfer of a reference frame’s  orien­

tation to a dependent reference frame. The quantity of interest 
for an e r r o r  analysis is the misalignment between coordinate 

frames resulting from this transfer.  Because this alignment is 
mathematically indistinguishable from a general rotation, the whole 
angle description has been developed in detail a s  the simplest 
description for misalignments. The whole angle description is 
especially convenient for dealing with the ser ies  of transfers in­
voled in certain alignment techniques. 
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2 .4 .2  System Measurement Capability 
~~ 

The actual transfer of coordinate frame orientation 

is accomplished by means of measurement. processes. E r r o r s  

made in these measurement processes a r e  the fundamental 

source of the misalignments discussed in the previous section. 

In this section we establish the relationship between measure­

ment e r r o r s  and the resulting alignment e r ro r s .  

Vectors a r e  the quantities measured in order to 

transfer alignment. A s  stated in Section 2 .  3. 1, the primary 

object of measurements made for alignment purposes is to deter­

mine the directions of these vector inputs. Although two non­

collinear vectors a r e  required to establish alignment unambigu­

ously (Section 2. 3. 2), the measurement processes associated 
with these vectors a r e  sufficiently independent of one another 

that the measurement of each vector may be considered separ­

ately. A s  a consequence of these facts, the basic measurement 
I 'problem may be stated as a simple question: With what accur­

acy can the measurements made with sensors integral to a par­
ticular inertial system indicate the direction of a vector? " 

The phrasing of this question is such that the answer 

must be given in a particularly convenient form, namely as a 
single angular magnitude. This choice of an angular quantity a s  
the interface between the measurement portion of the problem 

and the resultant alignment capability is a purposeful choice. 

While an angle is not necessarily the most natural means for spe­
cifying the measurement capability of all  types of sensors, it 
is indeed the most mathematically convenient for alignment dis­

cussions. Additionally, it  serves to highlight a logical cause 
and effect pattern. The "effect" is always angular (misalignment) 
in nature while the "causal" factor may well be a linear measure­

ment e r ro r .  This latter situation is to be considered in detail 

shortly. Finally, the angular tolerance within which an instru­
ment or  set  of instruments can indicate the direction of an input 
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vector serves as a very natural "figure of merit" by which to  
compare various systems. The crux of any alignment ,technique 
is how well the direction of each of the required vectors can be 
indicate d, 

The problem of vector direction indication has an 
exceedingly simple, yet important, pictorial representation.

-
This is given by Figure 2-12. There, l V  is the input vector nor­
malized to unit magnitude. CY is the angular uncertainty with 
which the measurement process indicates the direction of the 
unit vector, iv.In general, the plane defined b y iV and a unit 
vector along the direction of the misindicdion wil l  have no pre­-
ferred orientation about Iv. This is an extension of the fact 
that even with perfect measurements, angular rotations about 
a vector cannot be detected by measurements of that vector alone. 
For the case of a non-zero measurement e r ror ,  CY is thus geome­
trically interpreted a s  the half-cone angle of the cone whose gene­
ratr ix  sweeps out the locus of possible incorrect indicated locations 
of the measured vector. The axis of the cone is along the true vec­
tor direction. The apex of the cone is at  the center of measurement. 
The location of a particular incorrect indication is singled out by 
the aximuth angle, r). r )  is defined from an arbi t rary (but fixed) 
reference and has any value on the interval 0 - 2 ~ ,al l  of which 
a r e  equally likely. 

CY is properly a random variable, not a determinis­
tic. parameter. This means that CY actually describes a statisti­
cally distributed family of coaxial cones, rather than a single 
cone. In most cases, the distribution of CY is functionally related 
to  the distribution of several  other random variables. However, 
it is a single parameter which has a significant geometric meaning 
and which may be considered a s  a fixed quantity for purely geo­
metric considerations. 

The uniform distribution of r )  is independent of the 
distribution of CY . Yet it is recognized that the statistics of CY may 

41 




vary according to the relative vector-sensor orientation. Sta­

tistical variations in both the magnitude and direction of CY a r e  

logical. The magnitude variation of CY is accounted for in this 
work. However, the fact that the misindication may be developed 

in a preferred direction relative to the sensor orientation is 
ignored here.  Remember that our viewpoint is vector oriented, 

not system axis oriented. The preferred direction problem 

may be viewed a s  a second order refinement to be considered in 
the context of a detailed system analysis. 

Before proceeding to  relate CY t o  specific types of 
measurement e r ro r s ,  its role a s  a figure of merit  requires 

clarification. Because we consider only the e r r o r s  introduced 

by uncertainties in the measurement process, CY actually bounds 

the ultimate accuracy of alignment which may be achieved with 
a particular set  of sensors.  It represents the best one might 

hope to achieve given a basic uncertainty in knowledge of the 

sensors.  Unaccounted for is any slight degradation in accuracy 

introduced by processing of the basic measurement within the 

system. However, this bound emphasizes the basic limitations 

on alignment accuracy implied by varying measurement capabili­

ties. 

.- ----and2 . 4 .  2 . 1  	Basic Sensor E r r o r s  -__ Their Equivalent 

Misalignments 
Our discussion of measurements concerns 

only "black- box" single -degree -of -freedom sensors . This r e  ­
striction is merely a conceptual aid which does not preclude the 

use of multi-degree-of-freedom sensors in an actual system. 

Two- or  three-degree-of-freedom sensors a r e  mathematically 
equivalent to two or three single-degree-of-freedom sensors 

appropriately mounted on a rigid structure. 

There wi l l  follow shortly an examination 

of the ability of various groupings of these single-degree-of­

freedom sensors to indicate the direction of a vec.tor input. 
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First, however, we  undertake a more abstract (but instructive) 
examination of the measurement problem by briefly considering 
a hypothetical instrument which aligns itself along a vector in­
put (a ''vector seeker", if you wil l ) .  Every realistic sensor is 
characterized by two distinct quantities: 1) a sensitive axis 

(fixed relative to  the sensor 's  case); and 2 )  a certain transducer 
behavior with respect to this axis. We wi l l  so characterize the 
' I  vector seeker". 

Due to e r ro r s  in the construction and 

mounting of an instrument, its sensitive axis is typically not 
' Ilocated with perfect precision. We call this imprecision, sen­

sitive axis uncertainty" and denote it by the angle CY SA; so too 
for the vector seeker. Imperfect transducer behavior of an in-

CY T' Thisstrument also results in an angular'indication e r ror ,  
we denote transducer uncertainty. Again, this nomenclature is 
carried over for the vector seeker. For  clarification of the mea­
ning of the basic instrument uncertainties, the reader is referred 
to the more classical example of Appendix A. 

The virtue of developing the vector seeker 

concept is that it reduces various mechanizations of the same 
basic problem to a common denominator. Our ability to evaluate 
and compare different sensor systems is thereby greatly enhanced. 
The development of the total indication uncertainty, CY, of Figure 
2-12 from CY and CY now proceeds fo r  the vector seeker.SA 

The "vector seeker uncertainties equivalent to appropriate ar­
rangements of single-degree-of -f reedom sensors a r e  calculated 
later in this section. 

A vector seeker which is a perfect trans­
ducer indicates a signal null when its sensitive axis is collinear 
with a vector input. The geometry of such a situation is depicted 
in Figure 2-13a. As long as an observer knows the precise lo­
cation of the sensitive axis, the vector's direction will  be found 
without e r ror .  On the other hand,. in spite of the fact that the 
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SENSIT IVE A X I S  VECTOR I N P U T ;-L 

I N D I C A T E D  INPUT 

(a) PERFECT SENSOR 

PUT 

ASSUMED SENSITIVE 
AXIS 

I N D I C A T E 0  I N P U T '  

(b) SENSITIVE AXIS UNCERTAINTY 

(LOCUS OF CONSTANT PROBABILITY DENSITY) 

-
TRUE A N D  ASSUMED 

SENSITIVE AXES \ 

INDICATED I N P U T  

( c  ) T R A NS D UC ER UNC E R TAI N T  Y 

(LOCUS OF CONSTANT PROBABILITY DENSITY) 

Figure 2-13 The Geometry of Vector Direction Indication 
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\ INDICATED INPUTTRUE SENSITIVE AXIS 

( d  ) TRANSDUCER A N D  SENSITIVE AXIS UNCERTAINTY COMBINED 

A 

( e )  SPHERICAL TRIANGLE FOR R E L A T I N G  a, QT, & a S A  

Figure 2-13, continued. 
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t r u e  instrument sensitive axis lies along the vector, any sensitive 

axis uncertainty (a, SA of Figure 2-13b) is directly reflected in 

an equal magnitude direction indication uncertainty. The con­

stant probability density locus for misindications due to uncertainty 

in the location of a sensor 's  sensitive axis is a right circular 
cone whose axis is the t rue sensitive axis and whose half-cone 

angle is cy SA. Because the magnitude of CY SA is dependent 

merely on a defined quantity, it has no influence on the physi cs 
of the measurement itself. It is a random bias angle which can­

not be calibrated out. 

Figure 2-1  3c illustrates the situation where 

a, = 0 but the transducer behavior of the "vector seeker' ' is 

imperfect. These e r r o r s  affect the dynamics of the measurement 

process, resulting in the I '  seeker 's ' '  t rue sensitive axis coming 

to res t  a, T from the vector's direct,ion when a signal null is 
reached. The constant probability density locus for misindications 

due to imperfect transducer behavior is a cone whose axis is along 

the vector input, whose half-cone angle is CY T' and whose gene­

ratr ix  is the t rue sensitive axis of the sensor.  

Combining the effects when both CY SA and 

CY T are non-zero results in Figure 2-13d. The total indication 
e r ro r ,  CY , is the a, of Figure 2 - 1 2 .  It is measured between the 
generatrix of the cone of half-angle CY SA and %hedirection of the 

vector input. The axis of the cone of half-angle crSA is the gene­

ratr ix  of the cone of half-angle cyT. Note, therefore, that the 

surface of the cone of half-angle aSA is the locus of misindicated 
directions only for the illustrated location of the t rue sensitive 

axis. The complete locus consists of the surfaces of all cones of 

half-angle a,SA drawn about the infinity of allowable positions of 

the generatrix of the cone of half-angle a, T. 

In spite of the seeming complexity of this 

locus, the evaluation of a, is straightforward. An exact relation­

ship between the contribution of transducer uncertainty, "T and 
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the contribution of sensitive axis uncertainty, CY SA’ to the total 

indication e r ror ,  a, is obtained by analyzing +,hegeometry of 
Figure 2-13d on a unit sphere. The center of the sphere is 
coincident with the center of measurement. The vertices of the 
spherical triangle (Figure 2-136:) of sides LY T’ aSAand a a r e  found 
by the intersection of the following three 2adial directions with 
the surface of the sphere: the vector input direction (vertex A); 
the direction of the true sensitive axis (vertex B); and the di­
rection of the assumed sensitive axis (vertex C ) .  Defining the 
angle r j  between aT and aSAallows writing the law of cosines for 
spherical triangles 

cos a = cos aT cos + sin CY^ sin cySA cos r j  2.4-43 

For small  values of CY T and CY SA, Equation 2.4-43 becomes 

a 2 -- CYT 
2 

+ C Y S A  
2 

OT ffSA cos rj 2.4-44 

r j  may be written in t e rms  of the azimuth angles r j  1 and rj2 . of the 
cones of half angle cuT and respectively 

r j  = n - (rjl - v.2) 2.4-45 

Substituting Equation 2. 4-45 into Equation 2. 4-44 yields 

9and r j  2 a r e  statistically independent. Each is uniformly dis­

tributed on the interval 0 - 2n. 

Equation 2. 4-46 is useful as written only 
when exact values of r j  1 and rj2 a r e  known. This corresponds to  
knowing the relative orientation of the true and assumed sensitive 
axes and is in violation of our basic e r r o r  model. Meaningful 
quantities which may be readily evaluated from Equation 2.4-46-
a r e  the mean (5)and mean square (a2 ) values of a . 

The mathematics for this wil l  be found in 
Appendix B, with the results 
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2.4-47 

-
CY 

2 -- CYT 
2 

+ C Y S A  
2 2.4-48 

where& is a complete elliptic integral 18 of argument 

Note that the results of 2.4-47 and 2 .  4-48 a r e  purely geometric. 
They were obtained without knowledge of the statistical distribu­

tions of CY T and CY SA * The mean and mean square values of CY a s  

functions of the statistics of CY 
T 

and cySA a r e  obtainable from Equa­

tions 2. 4-47 and 2. 4-48 by further evaluation of the expectations 

indicated there.  While Cy cannot be-evaluated without knowledge 

of the distribution of CY T and CY SA' a2 is immediately given by 

. 2.4-49 

A s  stated at  the outset of this section, the 
' Isingle-axis vector-seeker " merely represents a system of from 

one to three single-degree-of-freedom sensors.  In order t o  utilize 

this concept, we must derive the CY SA 
and 

CYTrelated to mea­

ningful groups of sensors.  

We f i r s t  set  aSA to zero in order to  inves­

tigate the relationship between CY T and various types of transducer 

inaccuracy. In certain cases, the basic output of the sensor is 
proportional to an angular quantity, one of whose rays  is the 

measured vector. Optical instruments, such a s  s ta r  trackers and 

auto-collimators, fall into this category. In other cases, the sen­

sor's output signal is proportional to the magnitude of the vector 

and this signal must be further processed to establish the vector's 
direction. Inertial sensors, such as  gyroscopes and accelero­

meters,  a r e  in this category. In the former situation, e r r o r  
quantities a r e  normally specified as angular deviations from a 
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nominal input direction, These specifications would determine 
cyT directly. In the latter situation, however, e r r o r  quantities 
are related to magnitude uncertainties and these, in turn, must 
be converted to equivalent angular uncertainties After conver ­
sion, the magnitude measurement e r r o r s  determine cy T 

There a r e  two distinct procedures for  
using magnitude sensitive instruments to determine a vector's 
direction. The f i rs t  is to determine the direction directly 
f rom magnitude information. The second is to determine the 
null plane of the vector and infer the vector's direction f rom 
this. In the following, consider a t  f i rs t  the measurements made 
by a single instrument and assume a priori knowledge of the mag­
nitude of the vector or the significance of i ts  null plane, 

The cases of estimating the magnitude 
of a vector and estimating the null plane of the vector must be 
considered separately. Associated with these measurements 
a r e  the magnitude estimation e r r o r  quantities and En respec­
tively. E is the e r r o r  in the indicated measurement when the m 
instrument's input axis is along the input vector and the input 

magnitude has been normalized to unit::. E is the indicated out­n 
put when the input axis is in the null plane (the ideal output is zero) 
normalized against the magnitude of the vector quantity whose 
null is sought. 

Figure 2-14 illustrates the case of attempting 
-

to measure the orientation of a normalized vector, lVjby mea­
suring its magnitude. If the instrument is high reading (indicated 
input exceeds actual input by em), it will indicate a unit magni­
tude when, in fact, there is only a projection of (1 - em) along its 

input axis (Figure 2-13a). This corresponds to the angular e r ro r  
cyt indicated. If, on the other hand, the instrument is low reading, 
the relationship of Figure 2-13b holds. When the instrument is 
sensing an actual input magnitude (1+em) it indicates that it is 
along the unit magnitude vector-r V and the desired direction is 
removed from the indicated direction by cyb. 
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PROJECTION OF iv k G W ( I +- LENGTH ( 1 - a ~ )
1 V  

1NDICATE 0 
DESIRED RDIRECTION DESIRED INDICATED 

DIRECTION 01RKTlON DIRECTION' 

HIGH READING INSTRUMENT LOW READING INS I R  UMENT 

F i g u r e  2 - 14 Vector  Magnitude M e a s u r e m e n t  Er rors  

INDICATED NULL 
PLANE 

F i g u r e  2 - 1 5  Vector  N u l l  P lane  M e a s u r e m e n t  E r ro r s  
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For the high reading case 

cos CYa = 1 - ‘m 2. 4-50a 

while for the low reading case 

seccrb = 1 + ~  2.4-50bm 

Using the ser ies  expansion for the cosine and ignoring te rms  of 
order greater than two in CY yields, respectively 

2. 4-51a 
CYa = J 2 E m  

and 

1+ E 
2.4-51b 

m 

so  that when << 1 the e r ro r  in indicating the direction of iV 
by measuring its magnitude becomes 

CY = C Y a - .  C Y b  m 

CYm “ 2 E m  2.4-52 

The measurement of a vector’s null plane 
is shown in Figure 2-15. The desired normal direction is iv’ 
but due to the existence of E n normal to the unit vector TV’ the 
indicated normal direction is rotated from the desired normal 
direction by an angle an. The null planes are therefore also cyn 

apart. Geometrically, tan CY = en, which for small  en reduces n 
to  

CY = e  2.4-53 n n 

The angles CY and CY a r e  the CY^ for each case. They representm n 
the necessary conversion of magnitude e r r o r s  to angular equiva­
lents. 
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Equations 2.4-52 and 2 .  4-53, although 

derived for a restricted situation, contain an  interesting funda­
mental result. For a fixed measurement capability (em = 'n 
but E < 2 )  greater alignment accuracies can be achieved by me­

chanizations operating on a nulling principle (Equation 2.4- 53) 

than by those operating on a magnitude measurement principle 
(Equation 2.4-52). Fo r  typical values of E: in the range of 10-1 

to the alignment capabilities vary by one-half an order of 
magnitude to over three orders  of magnitude. In many cases, 

F <em, widening the gap even further. n 

Unfortunately, the results 2 .  4-52 and 2. 4-53 
present a picture which is oversimplified on two counts. Firs t  
of all, a single instrument wi l l  rarely suffice for either magnitude 

measurements or  null-seeking measurements. It is more com­

mon in inertial systems to provide sufficient mutually orthogonal 
sensors to span the defined measurement space. Thus for null-
seeking measurements, a minimum of two instruments is required 

to define the null plane. Except for special situations, magnitude 
measurements require three sensors. We must, therefore, de­

termine the resultant direction indicating capability of appropriate 

groups of sensors rather than just that of single instruments. This 
w i l l  be calculated shortly. 

The second oversimplification is  in our 

e r r o r  model for the inertial sensors. The quantities E and m 

En imply that an instrument is defined by a fixed percentage e r ­

ror .  This is not so for precision inertial sensors,  Rather, the 
indicated output (Vind) of a device is more commonly expressed 

as a weighted power ser ies  of the input (V)  along i ts  sensitive 

axis plus t e rms  dependent on the sensor 's  environment (thermal, 
field, etc. ) and te rms  related to inputs normal to  its sensitive 

axis (See Equation 2 .  4-54). 
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e r r o r  - -  

Vind = a0 + a l  V + a2 V2 + .  . . 

+ fcn of environment + cross  axis coupling 

2.4-54 


There is a popular nomenclature associated with the coefficients 
a .  of Equation 2.4-54 which depends upon the instrument under 
1 

consideration. Hence a 0 represents gyroscope drift  equally a s  
well a s  accelerometer bias (See Appendix A. ) These distinc­
tions a r e  relatively unimportant in this paper a s  numerical 
alignment results a r e  expressed in terms of non-dimensional 
quantities. 

For convenience, all  derivations wil l  

assume a normalized instrument whose ideal transfer from in­
put to output is unity. Thus a perfect instrument is described 
by Equation 2.4-54 with a l  = 1 and al l  other coefficients zero. 
In this work, imperfect sensors wil l  be described by the trun­
cated representation 2.4-55 rather 2.4-54. 

a. + alV 2.4-55 

1 1The t e rm "bias".will be synonymous with ao, sensitivity" with 

a l .  The uncertainty, a or e r ro r ,  in a l  is defined a s  Aa, = (a - 1). 
Because the e r ro r  coefficients a 0 and Aa 1 of an instrument a r e  

generally compensated to some degree in a 'system application, 
.-..we take a. and Aa1 to represent �he uncompensated uncertainty- .. 

existing in the sensor at the time of measurement. They a r e  the 
residual e r r o r  between the actual value of the coefficient and the 
best estimate of the coefficient available to the system at the time 
of alignment. 

2.4.2.2 System Magnitude Measurements 
Let u s  now reconsider the directional in­

dication associated with magnitude measurements of a 
vector V (IVl = V). Although we a r e  most interested in 
measurements made wjih a t r iad of instruments, it is instructive 
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to rewrite the single instrument result (Equation 2 .  4- 52)  in te rms  

of the description 2 .  4-55 .  When indicating the direction of a vec­

tor  with a single instrument, the indicated vec tor  magnitude (Vind) 
is constrained to equal the true vector magnitude (V) .  In order to 

satisfy this constraint a directional e r r o r  of 

“T =J2(ao/v+n,, 2 .  4 -56  

must exist. This e r r o r  is physically realizable only j f  

(ao,V) + Aa 1 L O ;  closed loop operation against an a priori mag­

nitude is impossible to achieve with a low reading instrument. 
This is simply because the output of a low reading instrument can 

never be as large as the known magnitude of the measured vector. 
Only an open loop search for a maximum indicated magnitude is 
physically realizable on an unrestricted bzlsis (It happens also to 
be free  of transducer e r r o r  in the steady state?. Regardless of 
the restricted applicability of the expression 2 .  4- 56, it demon­

strates  that the angular uncertainty resulting from locating a vec­
tor with a single instrument is an explicit. function of V, a0 and 
Aal. Contrast this to the implicit. form of Equation 2.4-52. 
The explicit form shows that F (and thus ?he directionh indi­m 
cating capability) cannot be divorced from the magnitude of the 

input to the sensor and cannot therefore be generally described 

as a constant percentage. In fixed base alignment techniques, 

the viewpoint of the system designer is to take the magnitude of 

the measured vector (e .  g. 121or (73 ie I ) a s  a fixed quantity and 
adjust his alignment capability, (YT’ primarily through the choice 

of instrument parameters. In this context, once h i s  choice of 

instrument is made em may be properly thought, of a.s a fixed 
percentage e r ro r .  By contrast, the designer faced with a moving 

base alignment problem must often consi.der the magnitude, V, 
of the vector as another variable over which he exercises con­

siderable choice. In fact, by specifying the carrying vehicle’s 
motion during alignment he chooses the dimensions, direction 

and magnitude of v. His choice is bounded only by the opera­
tional restrictions on movements of the carrying vehicle. The 
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accuracy CYT achieved at  any given time depends on jus t  how 
closely v approaches a desired nominal value. Because V may 

not be considered fixed in moving base alignment, em may not 
properly be considered a fixed percentage. 

We proceed now with the more realistic-
problem of indicating the direction of a vector, V, with a n  ortho­

gonal tr iad of instruments characterized by 

a O i  = Bias uncertainty of ith instrument. 

a = Scale factor of ith  instrument.li 

Aali = Scale factor uncertainty of ith instrument. 

= ali - 1  

-
V is described in instrument coordinates by 

- - - -
V = V (cos q1 i + cos + j + cos + k)  2.4-57 

-
while the vector indicated by the instruments, Vind' is described 

in the same coordinates by 
-

Vind = [(aol + 31v cos + ,)i 


+ (ao2 + a12 V-COS + 2 )  j 

+ (ao3 + "13 v cos + 3)  GI 2.4-58 

(See Figure 2-16)  Equation 2.4-58 may also be written 
- - I 

Vind = v +  E 2.4-59 

where 
- ­
e = [(aol + h a l l  V cos $ 1 )  i 

+ (a02 
+ A a  

1 2  
V cos $ 2 )  7 

+ (a03 -f: Aa 1 3  V COS $ 3) 2.4-60 
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= SINGLE AXIS SENSOR 

NOTE;-
v;,d= V + �  

Figure 2-16 Vector Direction Indication With A Triad of Sensors 
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It is reasonable to expect that on the average any worthwhile 
system of sensors wil l  indicate v perfectly. That is, the mathe­
matical expectation of Vind is V 

2.4-61 

and consequently 

E ( T )  = 0 2.4-62 

Equation 2.4-62 may be guaranteed independent of the magni­
tude or  direction of Vprovided 

2.4-63 

The techniques for establishing a zero mean-value for sensor 
coefficients (via instrument design and calibration) a r e  suffi­
ciently well established'' that this paper takes the statement of 
Equation 2. 4-63 as a basic assumption rather than a s  a require­
ment. 

The reader is cautioned that Equation 2.4-61 
must be interpreted literally. It is a vector equality stating that 
the vector Findequals the vector y o n  the average. This does 
not imply that, for instance, the magnitude of Vind equals the 
magnitude of v on the average. Nor does it imply that the average 
direction of Vind is that of 7.In spite of our intuition that the average 
measured magnitude and direction a r e  correct it merely states 
that the average total measurement of 7is correct.  This point is 

often missed in optimization studies2' which concentrate on t r a ­
jectory endpoint miss- distance minimization. The distinction 
wi l l  be quantified shortly. 

For alignment, of course, the direction 
indicating capability of the tr iad is of greatest interest. An 
e r r o r  in directional indication is expressed a s  the angle aT be­
tween 7and Tind. Because the tr iad is insensitive to rotations 
about v, we ignore the triad-referenced direction in which aT 
is developed and concentrate on evaluating the magnitude of aT. 
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This is an approximation which merits closer attention only 
when the platform rotation about v is precisely constrained. 

The magnitude of CY T may be c.alculated 

from 

1 + - V ' E  

v2 ~cos CYT 1 / 2k + 2 =V 2  + ")V2 

2.4-64 

which may be expanded to 

2.4-65 
-

Note that although 1. I << { V I ,  t e rms  of r ' E may not be ignored 
in comparison with te rms  of E ' V because orthogonality is suffi­

cient to cause E * 77 = 0. 

For three instruments of equal quality with 

symmetrically distributed coefficients (e. g. normal, uniform) 

and assuming (1) that each instrument is independent of every 

other instrument and ( 2 )  that the bias and scale factor uncertainty 
of any one instrument a r e  also independent, it is a straightforward 

procedure to compute the mean-square value of aT as 
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where te rms  of fourth- and higher-order smallness have been 
dropped from the result 2.4-66. (5 and oAa a r e  th.e standard 

aO 1 
deviations of instrument bias and scale factor respectively. 

Equation 2.4-66 provides a good deal of 
insight to the direction indication problem. First of all, it is 
possible to minimize the mean-square value of CY T by adjusting 
the orientation of the t r iad with respect to 7.Referring to 

parallel (or anti-parallel) to any one of the instruments' sensi­
tive axes. Not only does this physical orientation correspond to 
null seeking with two instruments but also the mean-square 

= 2 (Oa,/V) 2 is identically that derived for the null seeking 
case (See Equation 2 .  4-78). This is interesting because the 

result appears to be independent of whether o r  not the instrument 
along 7 is operative or inoperative. Why, in fact, does the fac­
tor 2 appear in Equation 2. 4-66 when three instruments a r e  
active? In answering this, remember that we a r e  only consi­
dering direction indication. The probability density for bias 
is spherically symmetric (for equal instruments), but only 
components of bias in the plane perpendicular to 7contribute 

to czT. The very important contribution of spherical symmetry 
is that the tangential component of bias always appears due to 
two instruments while the radial component appears ,due to  the third. 
The radial component affects only the magnitude of Tind(See 
Equation 2.4-67) .  

From these considerations we draw the 
important conclusion: On the basis of minimum mean-square 
e r ror ,  it is optimum to indicate the direction of a vector by 
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Figure 2-17 T h e  Surface Descr ibed  by a Radius  of Magnitude (1 -
L cos4 + i) 
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seeking its null plane with two instruments. This result strongly 
supports the practical reasons usually advanced17 for placing 
the accelerometer input axes of a terrestr ia l  navigator in local 
geographic coordinates. 

The maximum value of E (cy
T

2, occurs when -
V is symmetrically located with respect to the sensors, i. e . ,  in 
the center of the triad. It is relatively easy to show the impor­
tance of orientation on the e r r o r  uT. As an example, evaluating 
Equation 2.4-66 with constant aa ,oAai and V demonstrates that 

0 
merely by adjusting the location of the vector relative to the tr iad 
there is at least a 10% reduction of E (aT2)available provided 

(5 

-
V 

SF OAa, For  -V ?p(5Aal the reduction 

available by choice of orientation is less  than 10 percent. In 
situations where the bias uncertainty predominates, therefore, 
the orientation of v with respect to a triad of sensors becomes 
less significant. 

We turn for a moment to examine the accuracy 

with which the preceding t r iad measures the magnitude of 7.The 
mean- square magnitude measurement e r ro r  may be calculated a s  

9 

E C(lVindl- lTl )2 3 = (5 a + v o  cos 4 q J i
0 

2.4-67 

A s  with Equation 2.4-66, Equation 2. 4-67 ignores te rms  of 
fourth- and higher-order smallness. From Figure 2-18 it is 
evident that the minimum value of Equation 2.4-67 occurs when-
V is in the center of the t r iad and the maximum occurs when 
is along any one of the instrument axes. This is clearly opposite 
to the results for direction indication. See Table 2 -1 ,  The 
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applicable statement here is :  On the basis of minimum mean-
square e r ro r ,  it is optimum to measure the magnitude of a 
vector with a tr iad of instruments by placing the vector at  the 
center of the triad. 

Vector Orientation Magnitude-~. Error Direction Error . .­

.. . ... -.. 

Along any instrument 
axis 

. . .  . 

Center of Triad 
. .  

- _ _  

Minimum 
_ .  

Maximum 
-__ 

Table 2-1 

Demonstrating the Difference Between 
Magnitude and Direction Measurement 
E r ro r s  with a Triad of Instruments 

For any situation simultaneously requiring accurate measure­
ments of the direction and magnitude of a vector, the choice of 
vector orientation with respect to the t r iad is obviously a com­
promise. For example, the thrust vector is an attractive vector 
for  alignment purposes but accurate knowledge of magnitude of 
this vector is simultaneously important for guidance. 

An interesting constraint exists between 
mean- square magnitude and direction e r ro r s .  It derives from 
the fact that the mean-square value of the e r r o r  vector E is in­
dependent of the vector 's  orientation. See Equation 2 .  4-68. 

2 2E (F2) = 3 a2 -I-V a 
Aal 

2.4-68 

a O  

Equations 2.4-66 through 2.4-68 may be combined to show 

E (E2) = V2 + IV'I )2 1 

2.4-69 
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ARC LENGTH 
v a  

-
E 

-
E. = total indication error  vector 
a = direction indication er ro r  

(Vindl - = magnitude indication error  

Figure 2- 19 Relationship Between Magnitude and Direction 
Measurement Errors for a Given Triad 
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Figure 2 - 19 presents a graphical interpretation of this equation. 

It is accurate to  the extent that the chord length subtended by 
the a r c  VCY numerically equals VuT. The available tradeoffT 
between magnitude and direction e r ro r s  is thus seen to  be sim­
ply described (Equation 2.4-69) as a linear constraint. In a 

situation such as this, the discretion of the designer in choosing 
an appropriate compromise is extremely important. 

It is also interesting here to compare the 

quality of magnitude estimation attainable with a triad of instru­
ments and that attainable with a single instrument whose input 
axis is perfectly aligned with the vector. On the basis of mean-

square e r rors ,  this ratio is written as 

Magnitude Estimation Error of Triad 	 ­-
Magnitude Estimation Er ro r  of Single Instrument 

2.4-70 

l + r2 

where 

The upper and lower bounds of 2.4-70 a r e  plotted in Figure 2-20 

as a function of r. With any one instrument of the tr iad along 
the vector, the ratio is unity independent of the value of r. In 
other words, the tr iad is then no better than a single instrument. 
When the vector is in the center of the triad, however, there is 
an improvement with the tr iad of up to a factor of three (for 
predominant scale factor e r ror ) .  In between these extremes 

of no improvement and a factor of three improvement in magni­
tude estimation, the parametric variation is dependent upon both 
the value of r and the relative location of the vector with respect 
to  the triad. As with the direction indication problem, the 
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C-	MAX. ERROR ; ANY INSTRUMENT 
ALONG VECTOR 

VALUES OF RATIO L I E  IN 
SHADED REGION 

I -MIN. ERROR ; VECTOR IN 
CENTER OF TRIAD 

F i g u r e  2 - 2 0  Compar ing  Magnitude Es t ima t ion  Er ror  of a T r i a d  t o  
That  of a Single Ins t rumen t  

k = 8 SINGLE AXIS  SENSOR 

Vind 

Figure  2 - 2 1  Relat ive t o  Vector  Di rec t ion  Indication by Means of 
Two Magnitude Sensi t ive Ins t rumen t s  
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orientation of the tr iad is least significant when bias uncertainty 
predominates . 

One additional situation is relevant to 
direction indication via magnitude measurements. This entails 

indicating the direction of a vector by use of two orthogonal in­
strumehts and is germane to azimuth alignment by a vector 
matching procedure (see Chapter 111). Using the geometric 
definition of Figure 2-21 and assumptions similar to those em­
ployed In the derivation of Equation 2.4-66, we obtain the result 

This is rigorously correct for situations where is out of the 
plane of the instruments provided V represents the magnitude 
projection onto the instrument plane. The e r r o r  2.4-7 1 is mini­
mum when either instrument is along the vector (& = Oo, 90°, 
180°, 270O). In these orientations the scale factor uncertainty 
makes no contribution to  the mean- square direction indication 
e r ro r .  At + = 45O, 135O, . . . . the maximum e r ro r  of 
E G a o l V )2 + 112 OAa 21occurs. There is at  least a 10% reduc­
tion of E (aT2 ) availalble by orientation provided (OaoIV)5 
2-12DAa 

1 


Results have been derived in this section 
concerning the e r r o r s  resulting from indicating the direction of 
a vector with various groups of magnitude sensitive instruments. 
The mean-square results a r e  combined with those of the next 
section concerning null-plane seeking with the same instruments 
and a r e  presented in Table 2-3. 

2.4.2.3 	 System Null-Seeking Measurements 
We turn now to the problem of direction 

indication by null- seeking measurements. The explicit object 
of null-seeking mechanizations is to determine the null-plane of 
a vector. Implicit in this determination is the knowledge that the 
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Tiorma1 to the null-plane is parallel (or anti-parallel) to the di­

rection of the vector. If it is necessary to determine the signed 
direction of the vector, the sign ambiguity inherent in null-

seeking must be resolved by other measurements. 

The principle of null-seeking measure­

ments is to control the orientation of a sensor 's  axis in order to 
achieve an indicated output of zero. For a perfect sensor, the 

null indication is achieved when the sensitive axis is normal to 

the vector input. This is independent of the vector's magnitude. 

A sensor with zero bias e r ro r  but with a sensitivity e r ro r  wi l l  
likewise have zero output when its sensitive axis is in the null 

plane. Directional indication errors  can a r i se  only in the presence 

of an instrument bias. In order to obtain a net sensor output of 
zero when bias is present, the sensitive axis must be tipped out 

of the null plane an amount sufficient to cancel the bias term 

with a small projection of v along the sensitive axis. From Equa­
tion 2. 4-55 the constraint is 

+ a  Vsincr = 0 2.4-72 
a. 1 t 

where at is the angle between the sensor 's  sensitive axis and the 

normal projection of the sensitive axis on the null plane (i.e., 
the complement of the angle from the sensitive axis to v>.for 
small CYt 

2.4-73 

By comparison with 2.4-53, the magnitude of the parameter E, is 
seen to be 

Icnl 
= . The fixed percentage e r r o r  description 

"1 

of inertial instruments is thus invalid for nulling mechanizations 
as well as magnitude measurements. 
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The complete indication of a vector’s null 
plane requires two instruments, each of whose capability is de­
scribed by Equation 2.4-73.  We calculate now the net transducer 
inaccuracy, “T’ of Equations 2.4-48  and 2.4-49 for the complete 
null-seeking mechanization. In Figure 2-22 the instruments a r e  -
distinguished by the subscripts a or b. lvis a unit vector along- -
the input vector direction. la and 1

b a r e  unit vectors along the 
sensitive axes, separated by the angle 8 (e = 90° nominally) in 
the plane of the sensitive axes. The indicated direction of Tv 
is the direction of the c ross  product lax ib,shown by the unit-
vector lab. CY a and ab represent the CYt of Equation 2.4-73 for 
each of the instruments. 

is derived by wr i t ing1
V 

a s  components
OT 

along la,iba n d a b  

-
= la sin + i sin ab + iab a b cos CY T 2.4-74 

Taking the inner product of iV with itself and solving for cos CYT 
gives the result 

cos aT =/ 1 - sin2 aa - sin2 
Ly b - 2 s in0a sin ab cos e 

\. 
2.4-76 

For small  e r r o r  angles this reduces to 

. .

=J- 2 + C Y 2 + 2 a a  CYb cos 8 2.4-77 
a b 

Both 2.4-76 and 2.4-77 emphasize the sign ambiguity inherent in 
null-seeking mechanizations. In fact, the at of Equation 2.4-73 

does not have to  be carried a s  a signed quantity. Only its mag­
nitude is important. 
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Figure 2-22 Geometry for determination of aT for Null  Seeking Mechanization 
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By 2. 4-77 a null-seeking mechanization 
with two orthogonal instruments of equal quality is found to have 
a resultant mean-square transducer e r r o r  of 

2.4-78 

This expression recognizes that the e r r o r  contribution of scale 
factor uncertainty in nulling mechanizations is-of secondary im­

2portance compared to the bias contribution. cyT represents one 
I tof the statistical parameters of a vector seeker“ operating on 

-2the nulling principle. There is no spatial dependence of CYT as 
with the tr iad of magnitude sensitive instruments, but this does 

independently check the results obtained for a tr iad (Equation 
2.4-66) when any instrument is along the vector. Since 2.4-78  

was calculated on the basis of two instruments and 2 .  4-66 on the 
basis of three instruments, it is indeed interesting that the re­
sults a r e  identical. 

It is instructive to investigate the relative 
importance of matching instrument quality versus maintaining pre­
cise orthogonality. For orthogonal but unequal instruments, 
Equation 2.4-77 may be written a s  

“T =pzat 2 .4 -79  

CY “bwhere n is chosen from either n = -a or  n = - in order to 
“b “a 

constrain n 2 1. For equal but non-orthogonal instruments 

The points where instrument mismatch and non-orthogonality 

make equal contributions to the misalignment cyT a r e  obtained by 
equating 2.4-79 and 2.4-80.  The percentage mismatch between 
instruments is given by 100 (n-1)	while the percentage orthogo­

712 The curve of equalnality e r r o r  is given by 100 (1 - -1.e 
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Figure 2-23  Curve Relating Orthogonality and 
Instrument Mismatch Errors whichcause Equal 

Misalignments 
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misalignment contributions is plotted in Figure 2-23. This shows 
that on a percentage basis the total null-seeking capability is 
more dependent on maintaining orthogonality than on matching 
instruments. For  example, an e r ro r  caused by a 370instrument 
mismatch is the same as that caused by a 2'7'0 orthogonality e r ror .  

The results of this section concerning the 
e r r o r s  resulting from seeking the null-plane of a vector with 
magnitude-sensitive instruments a r e  tabulated in Section 2.4.2. 5, 

Table 2-4. 

2 .4 .2 .4  System Sensitive Axis Uncertainty 

In this section the equivalent sensitive axis 
uncertainty, (YSA' for systems of sensors is calculated. The 
mea surement principles considered correspond to those discussed 
in the preceding two sections. In keeping with the earlier assump­
tion of equal quality sensors for each system, the instruments 
a r e  all assumed to have the same sensitive axis uncertainty, Q sa  
Additionally, the sensitive axes of multiple sensor systems a r e  
assumed orthogonal. cyT is temporarily set to zero.; 

Both magnitude and nulling measurements 
with single instruments a r e  trivial cases for which the equivalent 
uncertainty and instrument uncertainty a r e  identical (aSA = Qsa  ). 

Two sensors employed in a hulling me­
chanization, however, present a much more difficult situation. 
With multiple sensor operation, we revert  once again to the 
I '  vector seeker' ' concept in order to define the equivalent aSA 
for the system. The angle between the assumed and actual sen­
sitive axes of a system's equivalent "vector seeker" is the desired 
angle QSA' For  the nulling system, therefore, (YSA is the angle 
between the normal to the plane. containing the actual sensitive 
axes and the normal to  the plane defined by the assumed sensitive 
axes. Figure 2-24 a shows this situation. The unit v e c t o r s i-
and j lie along the. instruments' actual sensitive axes while the 
unit v e c t o r s x  a n d 1  lie along the assumed sensitive axesb 
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(a) GENERAL GEOMETRY IC)"FOUR - BAR LINKAGE '' 

10 
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(b] PROJECTED VIEWS FROM (a) (d) 	 SPHERICAL TRIANGLES FOR DIAGONAL 
EVALUATION 

Figure 2-24 Geometry for Determination of cysA fo r  Null Seeking Mechanization 
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11(coinciding with the scribed line"). The axes a r e  related by 
the constraints 

1 . i  = c o s ~a Sal (2.4-81) 

l b . j  = cos CY 
Sa2 

The actual sensitive axis of the equivalent vector seeke* is 
determined b y k  = i x j whereas the assumed sensitive axis is 
coincident with iax ib.The deviation between these axes is 

evaluted from 

(2.4-82) 

From the projected views of Figure 2-24b 
it is simple to write 

- - -+ CY sal sin q 
1 

- + C Y  
sa1 

cos q l i ;l a  1 i j
- ­
1b = -asa sinrj2 T+ 1 -+CY

sa2 
cos q2 k 

2 j 

(2.4-83) 

The angles ql and v2 a r e  independent random variables, each 

uniformly distributed on the interval 0 to 2 7r. This recognizes that 

sensitive axis uncertainty for a single instrument is specified 

merely a s  an angular uncertainty from' a nominal scribed line. 

If t e rms  of second order smallness a r e  
retained when evaluating 2.4-82 by use of 2.4-83, the following 
results 

sinr) 
Q SA 

2 
=2{-asa2 cos2 V1+" Sa2 cos2q2-CY sal CY sa2 sinr)1 4  

(2.  84) 
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In te rms  of mean square values, 2 = a2 + a2 
“SA sal sa2 

which leads to the simple result for equal quality instruments in 

a null seeking arrangement. 

2 . - 2 

SA - 2asa (2.4-85) 


Before proceeding to derive (Y 
SA for other 

situations, let us  examine an  important distinction between the 
problems represented by Figures 2-22 and 2-24a. If (Yt is con­

sidered on a deterministic basis, the value of uT is uniquely 
determined. In contrast, for a fixed value of LY there is an in­sa 
determinacy in the evaluation of (YSA’ This may be explained 
graphically a s  well a s  by writing the mathematical expressions 

for 

Consider i, j and; in Figure 2-24a as a - -
fixed reference coordinate set. The Fa, 7, and (lax lb)triad 
is considered a s  a rigid member free to pivot about its origin 

and, therefore, rotate with respect to the fixed triad. This -
motion is subject only to the constraint that the tips of iaand lb 
remain in contact with the edges of the unit-height cones of half-
angles LY . If we assume the half-cone angles a r e  identical,sa  - -
each vector I, and 1b may traverse  a ful l  conical locus while 

satisfying this constraint. One of the possible motions results- -
in the line (lb- 1 ) always remaining parallel to ( j  - i ) but a 
varying in separation from zero to cy sa’ The angle ctsA takes 
on corresponding values between zero and some maximum. The 
fact that aSA has a range of values for a fixed value of oSa is the 
indeterminacy mentioned earlier.  

For an explicit solution of this determi­

nistic problem, one must solve a three- dimensional geometry 

which might be described as a four-bar linkage mapped onto a 
sphere. The four links a r e  arc-lengths subtending the angles 
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asa' ~ / 2 ,aSa and 7r/2 in sequence (See Figure 2-24c). The angle 

q is the independent variable required to make the problem com­
pletely deterministic. The reader is cautioned at this point that 
an explicit solution is afforded by the introduction of r)  only be­
cause the half cone angles aSa a r e  assumed identical. 

The mathematical expression for aSA is 

-
cos CY SA = (lax ib). (Tx$ 

-- (la.i) (lb.j )  - (la.j )  (lb.i) 2. 4-86 

Using 2.4-81 with 
- e - -

COS = cos2 (Y -.(la.j) (lb.i) 2.4-87SA sa 

The unevaluated dot products of 2.4-87 
are geometrically interpreted a s  the diagonals of the four-bar 
linkage mentioned above. These diagonals separate the four-
bar linkage into the; two spherical triangles of Figure 2-24d. 
Application of the law of cosines yields the results 

1 .j = sin a cos r )  2.4-88 a sa 

1b . i  = - s i n a  s a  cos r)  

Substituting 2.4-88 into 2.4-87 and reducing for the case of 
small  aSa 

n 

2.4-89 

which has a maximum value of aSA = ,/?asa. 

There is another locus which satisfies -
the constraints 2.4-81. In this case the lines (1 - 1 ) and 

- b a(3- i) do not remain parallel but intersect. It happens that this 
results in the same maximum value for aSA' Therefore, for a 

nulling measurement with two sensors of deterministically equal 
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uncertainty, the equivalent sensitive axis uncertainty is given by 

0 < aSA +asa 2.4-90 

The foregoing discussion relates to an 
admittedly restricted situation. Yet it is important to recog­

nize the indeterminacies which may result from considering 
single-axis conical e r ro r  loci. The concept of evaluating pa­
rameters  of an equivalent ''vector seeker" suppresses these 

indet erminancie s eff ectively. 
For a two-instrument magnitude measure­

ment, an orthogonality constraint is required to describe the 

sensitive axis uncertainty a s  an equivalent rotation. In this case, 
the equivalent sensitive axis uncertainty is precisely the uncer­

tainty in the best estimate of the individual sensors '  axis loca­

tions. For identical instruments ctSA = (Y sa' 
The equivalent "vector seeker' '  for a three-

instrument magnitude measurement has its sensitive axis in the 

geometrical center of the triad. As in the earlier null-seeking 

situation, a triple constraint of the form 2.4-81 does not yield a 
unique value of (YSA even in  a deterministic situation. Yet we 
know from Equation 2.4-10 that these three constraints do fix a 
unique value for the magnitude of the whole angle rotation be­

tween the two triads. The discrepancy involves the location of the 
axis about which the whole angle rotation develops. If the rota­
tion happens to occur about the sensitive axis of the ' I  vector 

' Iseeker, then aSA = 0. However, if :t develops about any axis 
normal to the sensitive axis, (YSA 

takes on its maximum value. 

On a mean square basis, the equivalent sensitive axis uncertainty 
for a magnitude measurement with three sensors is given by 

2.4-91 


The reader is reminded that the result 2.4-91 is valid whether 

or  not the sensitive axesare  mutually orthogonal. We have, 
assumed, however, that they are .  
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2.4.2. 5 Summary of System Measurement 
Capabilit? 
At the beginning of Section 2.4, the fol­

1 1lowing question was posed: With what accuracy can the 
measurements made with sensors integral to a particular 
inertial system indicate the direction of a vector? " We review 
now the key results obtained in response to this question. 

The evaluation of the measurement capa­
bility of a system depends upon computation of the statistics of 
the parameter CY . Figure 2-12 shows the simple geometric 
interpretation of CY as the angle between the indicated and actual 
vector directions. This single parameter serves for quantita­
tive comparison of various systems regardless of the instruments 
or measurement technique under consideration. It has been shown 
(Equations 2.4-48 and 2.4-49)how CY is related to uncertainties of 
the instruments employed by a system and, further, that the 
values of CY a r e  a useful means for comparing the self-contained 
measurement portion of various alignment schemes. :$ 

The instrument uncertainties which affect 
alignment measurements fall into two classes, namely those 
related to knowledge of sensitive axis locations (aSA) and those 
related to knowledge of transducer behavior (aT). In addition to 
depending on the magnitude of individual instrument uncertainties, 
uncertainties for systems of sensors depend upon both the instru­
ment configuration and the technique of measurement. The deter­
mination of CY from aSA and aT, however, is independent of the 
instrument configuration and measurement technique. 

The mean-square e r r o r  contribution of 
,sensitive axis uncertainty, CY SA' is presented in Table 2-2. En-
t i res  in this table were analyzed in Section 2.4.2.4. Because 
our definition of a does not admit negative values, a will sa sa 
have an asymmetric probabi l i tyensi ty  function with mean value 
other than zero. This is why as: is written in t e rms  of mean-

>: The reader is reminded that a, therefore, relates to the 79 
maximum achievable accuracy, not the minimum. 



square values rather than variances. 

Themean-square e r r o r  contribution of 

transducer uncertainty, (YT' is presented in Table 2-3 .  The 

transducer-limited ability of an inherently angle sensitive device 

to measure the direction angle of a vector is obtained directly 
from its specifications. (Yt denotes this uncertainty. It is mea­

sured in a plane containing the vector and the instrument's sen­
sitive axis. The complete specification of a vector's direction 
only requires the measurement of two direction angles. The 

corresponding measurement planes intersect in the vector and 

it is assumed they a re  orthogonal. The angular uncertainty, 

(Y within which two such sensors indicate the vector'sT' -
direction is given by + 0 2 ' .  (In Table 2-3 (Y 

2 
-­

t2 - ­
2 = at2 .) The entries in Table 2-3 pertinent to sensors 

O t 2
whose output is proportional to the magnitude of the vector mea­

sured, summarize the efforts of Section 2.4.2.2 and 2 . 4 . 2 .  3 in 
converting magnitude uncertainties into equivalent angular un­
certainties. 

Tables 2-2 and 2-3 a r e  meant primarily 

to help evaluate the mean- square direction-indicating e r ro r  of 
-a system. Knowing the measurement technique to be employed, 

thevalue of (YSA obtained with the help of Table 2-2 and the value 

of (YT obtained with the help of Table-2-3 a r e  combined by the sim­
2ple sum of Equation 2.4-48 to yield (Y . This sor t  of procedure is 

the essence of the "vector seeker' '  concept. All measurement 

techniques and sensor descriptions are reduced to an ability to 
seek the direction of a vector. An evaluation of other statistics 
of the vector seeker, a s  for example the mean value of cr (See 

Equation 2.4-48), requires further reduction of the equations 

for (Y derived in the text. 

8 0  




A s  a somewhat trivial example of the use 
of the tables, we calculate the maximum accuracy to be expected 
in finding the direction of 2 with particular accelerometers. From 
a standard catalog, we chose at  random an accelerometer .with 
specifications (as interpreted by this author) 

CY = 0 .1  m r  sa  

(T = 5x10m5g 
aO 

OAa1 = 1 ~ 1 0 - ~ g / g  

By ,simple algebraic manipulation we find 

CY = 0.158 m r  for null-seekingr m s  

0.163 mr  max 
-- I for a tr iad 

b.141 mr  min J 
In addition to providing a calculational 

aid, Tables 2-2 and 2-3 yield certain fundamental comparisons 
between various measurement methods. The results of Table 
2-3 have been largely discussed in Section 2 . 4 . 2 . 2 .  One remaining 
comparison is .that for measurements made with angle-sensitive 
instruments to be equivalent to those made with magnitude-sensitive 
instruments, then either 

2.4-91a 

or 

2.4-91b 
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1 MAGNITUDE SENSITIVE INSTRUMENTS 

I--­
MAGNITUDE ANGLE SENSITIVE 

I 
MEASUREMENT I INSTRUMENT 

f 

1 2 
CY 

2 
sa sa 

-
2 2 2 

2 c u  
2 

sa sa 

3 

I 

Mean-Square Error Contribution, a' SA ' of Sensit ive Axis Uncertainty for Various 
Combinations of Measurement  Methods and Equal Quality Sensors .  

Table  2 - 2  



MAGNITUDE SENSITIVE INSTRUMENTS 

NUMBER OF 
SENSORS NULL SEEKING MAGNITUDE MEASUREMENT 

1 IndeterminateI 
2 

ANGLE SENSITIVE 

INSTRUMENTS 

-
2 

I~ - j
!

2 
"t 

Mean-Square Error  Contributian, CY' T' of Transciucer Uncertainty for Various Combinations of 

Measurement Methods and Equal Quality Sensors 

Table 2- 3 
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depending upon whether null-seeking or  direction-seeking a r e  

employed respectively. 

Equation 2.4-48 shows that on a mean-
square basis the contribution of sensitive axis uncertainty to 

a system's vector indicating capability is every bit as important 

as the contribution of transducer uncertainty. Reduction of the 

magnitude of cysA is, thereby, an imErtan t  objective. Table 2. 3 
shows that a reduction of 25% in a (YSA may be had by using two 

instruments rather than t h E e .  An alternative means of reducing-
2 2aSAis by minimization of (Ysa' 

The ultimate goal of alignment is to orient the 

guidance sensors (gyros and accelerometers). Yet frequently 

this is achieved indirectly by aligning a set of fiducial axes scribed 
in the IMU's stable member. In any situation where a set of 
scribe-marks define the prime reference frame of a system, the 

relative orientation between the sensitive axes of the inertial sen­
sors and reference coordinates must be established by a carefully 
controlled instrument mounting procedure and/or a calibration pro­

cedure. Knowledge of this relative orientation is necessary in order 
to transform data from the measurement frame defined by the sensi­
tive axes to the scribed reference frame. It is precisely such a 
data transformation requirement which introduces sensitive ax  is 

uncertainty problems. Let us pursue th is  by assuming the role of 
an observer standing on the platform. If an inertial vector is mea­
sured for alignment, the inertial sensors can determine their orien­
tation relative to the vector (e. g . ,  the accelerometers locating 2). 
But unless we know our orientation (i.e. the scribe-mark locations) 
relative to the instruments, this information is useless in establishing 

our orientation relative to the vector. aSA describes the uncertainty 
in knowledge of our orientation with respect to the instruments. But 

of what importance is our orientation (scribe-marks) to the guidance 

function? In a word, none. When measurements of the inertial 
sensors a r e  used for alignment a s  well as for guidance, the system's 
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pr ime reference frame should be affixed to the sensitive axes 

of a set  of inertial sensors. The location of the reference 
frame with respect to the structure is no longer of interest, 
except to know that it is described by a fixed rotation. In just 
a very few words, by defining our reference coordinate frame 
coincident with a set  of instrument axes we set  the sensitive 
axis uncertainty for those instruments to zero. 

Lest anyone promote the setting of a 
refe.rence frame according to an instrument frame a s  a cure-
all  for sensitive axis uncertainty problems, there a r e  many 
limitations. First, it requires a tr iad of sensors to do a job 
of which a pair' of sensors may be capable. Second, unless one 
triad of instruments can be used for all  alignment measurements 
(at least two required), the problem of relating two sets  of sensors 
to one another is very similar to relating each set to an arbi t rary 
reference frame. Third, external information supplied to the 
system .must be coordinatized via the platform axes seen by the 
external sensor. 'This requires the sensitive.axes to  be cali­
brated in platform reference coordinates once again. More 
particularly, when non- inertial inputs a r e  used .for alignment, 
the use of scribe-mark coordinates a r e  necessary to relate the 
sensitive axes of inertial and non-inertial sensors.  

In view of these drawbacks, it is best stated 
here only that sensitive axis uncertainty 1) is a significant source 
of e r ro r ,  2) can be reduced by careful mounting and calibration 
procedures, and 3) can be eliminated for one set  of sensors by 
the proper choice of reference coordinates. 

2.4.3 Composite Misalignment For Two Vector Measure-
._  -. ­

ment 

Thus f a r  the ability of an IMU to independently indi­
cate the direction of,each of two non-collinear vectors has been 
established. This ability is expressed for each vector by the un­
certainty angle a. It remains to develop the.magnitude of the total 
IMU misalignment resulting from imperfect measurement of the 
vectors . 8 5  



The directions of the two vectors (Vl, V,) being 
measured and the loci of possible independently indicated di­

rections are shown in Figure 2-25. 8 is the angle between the 

measured vectors, corresponding for example to the co-latitude 

angle in a gyrocompassing system. The dependent reference 
frame being aligned is essentially fixed to the unit vectors (i-vl)ind 

and (iv2)ind - It may be represented by the non-orthogonal 

coordinate set  composed of (ivl) ('iTv2)ind' and the unit nor-

The frame being aligned to is similarlymal  to them, (in)ind. 
fixed to  the coordinate set  r r , . 

vlJ v2 

It is shown at the end of Section 2 . 4 . 1  that, provided 

the evaluation of the magnitude of the whole angle rotation,@, for 
the non-orthogonal coordinate set is the same as the evaluation 
for an orthogonal set. The provision that the angle between 
(Tvl)ind be 8 is more a natural than an artificialand (iv2).ind 
constraint. As noted recently, 8 is the co-latitude angle in 
gyrocompassing system,. In master-slave configurations, 8 

is effectively measured by the master and supplied to the slave 

for control purposes ( 8  is implicitly 7r / 2  for vertical-azimuth 

situations). Lack of any constraint between the allowed indica­

tions merely renders the concept of a total misalignment mea­
ningless. In that case the realizable platform misalignment 

angles assume the infinity of values related to all combinations 

of points on the indicated loci. 

The angles a1 and CY2 will  be recognized as equiva­

lent to the 4i of Equation 2.4- 1 s o  that @ is obtained from 

8 6  




Figure 2-25 Geometry of Two-Vector Composite Misalignment 
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2 2
4 = j k J 2 1  + CY 2 + C Y  2.4-10 

\ 

where cr3 is defined by Figure.2-25. To calculate u3 

crvl 'V2 3 c (iVl)ind (lV2- 1 ind] 
-	 .-

sin 8 sin 8 

- +{cos CY1 cos CY - c i -
v1 . ( Tv2 1ind. I  -

sin 8 2 

from which 

2.4-93 

Except in the vicinity of 8 = 00 or 8 = 90° the approximation 

2.4-94 

is reasonable. Cases of 8 near zero are uninteresting but cases 
of 8 near 900 are important. Figure 2-24 and its associated 
mathematics substantiate that the value of a3 resulting from use 

of the approximation 2.4-94 at 8 = 90° is the correct upper bound 
on and therefore a lso on@. (The value of cy3 is only bounded 
for fixed al, cy2 and 8; it is not unique. ) 

Introducing Equation 2.4-94into 2.4-93 and intro­
ducing that result  into Equation 2.4-10, the following is obtained: 

2.4-95 

88 




- ­
2 2.The mean-square angular uncertainties, a1 and u2" a r e  not ge­

nerally equal. For cases where they may be related by a simple 
- - factor n, ascribe the l i teral  CYnumerical 7to the smaller of 

2a; and u2 such that in the expression 2 .4-96  

- ­
12 = [ z ( n2 + 1)(1+ csc2 8 ) l a2 2.4-96 

the quality factor n is always greater than unity. The square-
root of this equation is .plotted in Figure 2-26 a s  afunction of 
n and 8. 

A word regarding the "quality factor" n is in order. 
It is admittedly a shaky proposition to relate complex systems 
by simple numerics, but only from the viewpoint of mathemati­
cal rigor. From the viewpoint of practical utility, the use of 
simple numerics for  comparative purposes is commonplace. 
That we have chosen the ratio of root-mean-square direction-
indication e r r o r s  a s  a figure-of-merit is a natural result of the 
preceeding developments. 

It may be seen from Figure 2-26 that at  0 = 90° the 
total r m s  misalignment is approximately 98 per cent attributable 
to the poorer measurement when n =: 5. In fact, when one mea­
surement is.only twice a s  good a s  the other at  8 = 900, the poorer 
measurement accounts for almost 90 per cent of the total e r ro r .  
Only when 0 is significantly less  than 90° does the total e r r o r  
reflect a meaningful component from the more accurate measure­
ment. 

2 .4 .4  Information Transferred From An External Sensor 
o r  System 
Section 2. 4. 2 was conceriied with the ability of a 

set of sensors to indicate the direction of a vector input. One 
of the characteristics of moving base phenomena is that frequently 
the measured vector differs in direction and/or magni­
tude from the desired vector. If disturbances causing changes 
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Figure 2-26 Composite Misalignment for Two-Vector 
Measurement 
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in the desired vector's direction a r e  of sufficient intensity, com­
pensatory information may be supplied in an attempt to reduce 
the discrepancy. Considering that compensation procedures a r e  

rarely perfect, a residual angular uncertainty ( p ) between the 
direction of the desired and compensated actual vectors (See 
Figure 2-27)  must be accounted for. The resulting total uncer­
tainty in finding the direction of a desired vector input is assigned 
a s  y. 

From Figure 2-25, 

j! = a2 + p - 2 a  p cos q 2.4-97 

where r)  is uniformly distributed. Using the results of Appendix 
B, Equation B-13 and B-16, 

2.4-98 

2.4-99 

CY was the subject of Section 2.4.2. The evaluation of p since 
it is strongly related to  specific schemes applicable to the 
moving base alignment problem, is deferred to Chapter 111. If 

0 is non-zero when the results of Section 2.4. 3 a r e  used, a 
simple substitution of yfor CY is rigorously correct.  

2 . 5  Summary 
This chapter has attempted to develop a unified theory of 

alignment whose purpose is to lend coherence to the analysis of 
numerous techniques proposed as solutions of the moving base 

alignment problem. It is founded on the two considerations common 
to all alignment procedures: coordinate f rames and measurements. 
This serves  to adequately bound expected alignment accuracies. 
All alignment procedures are viewed as the transfer of orientation 
between two coordinate f rames by the measurement of at least two 
non-collinear vectors. Separate techniques vary only in the me­
chanization of particular measurements. 
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Coordinate frame rotations a r e  handled a s  whole-angle 
I 

rotations, the latter being developed in te rms  of a l l  the more 
usual rotational parameters.  Certain interesting results are 
derived concerning the magnitude of the whole-angle rotation 
in the case of Euler angles and principal direction cosines. 
The latter angles a r e  a lso shown to be an especially convenient 
representation for problems involving non- orthogonal coordi­
nate sets.  

Measurements a r e  discussed from the viewpoint of a 
system of single- degr ee-of - f r  eedom sensors attempting to 
locate tkie direction of a vector input. Both magnitude-sensi­

tive and angle sensitive instruments a r e  considered. In the 

former case, bias and scale factor uncertainties a r e  the assumed 

e r ro r s .  In the latter case, the uncertainties a r e  inherently 
angular. Sensitive axis location uncertainties a r e  included for 
both cases.  The measurement e r r o r  of any system is reduced 
to an angular uncertainty in indicating the direction of a vector 
by converting the uncertainties of magnitude sensitive instru­
ments to their angular equivalents. This conversion is carried 
out for all practical combinations of sensor -to-vector orienta­
tion. An important result of this conversion is the establishment 
of definite guidelines to minimize magnitude and direction indica­
tion e r r o r s  as a function .of instrument uncertainties and the 
orientation of the vector with respect to the sensors. 

Deviation of a vector input from a desired nominal direc­

tion due to base motion is expressed in angular te rms  and inclu­
ded with the basic measurement e r r o r .  'The magnitude of the 
total platform misalignment resulting from independent mea­
surements of two non-collinar vectors is calculated as a function 
of the angular uncertainties about the nominal positions of each 
of the vectors. 

Application of the unified analysis to specific alignment 
techniques is accomplished in Chapter 111. 
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CHAPTER I11 

ANALYSIS O F  ALIGNMENT TECHNIQUES 

3. 1 Introduction 
The preceding chapter considers a l l  approaches to the 

solution of the moving base alignment problem as a class of non­
dimensional vector direction indication problems. In contrast to 
this, the majority of the literature concerned with aligning ineGtia1 
systems on a moving base is an exposition of distinct "techniques. 11 

The abstractness of the former approach is reconciled with the lat­

t e r  approach in this chapter. This is accomplished by individually 
discussing several techniques within the analytical framework of 
Chapter 11. 

The most significant techniques appearing in the literature 
(and those considered in this chapter) are:  

1 )  Vertical Indication 
2)  Gyrocompassing 
3 )  Star Tracking 
4)  Fix Monitored Azimuth 

5) Vector Matching 
6) Gimbal Angle Matching 
7) Optical Comparison 

Each of the foregoing techniques makes measurements on a dif­
ferent vector quantity. This is perhaps the clearest distinction 
among them. Once the vector associated with a given technique is 
identified and the measurement sensors a r e  defined, the limiting 
ability of the sensors to indicate the direction of the vector is ob­
tained from the results of Chapter I1 (as a quantitative evaluation 
of the angle (Y). We also establish the significance of the vector 
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relative to a coordinate frame of interest and express the degree 
to which it maintains its significance in  the face of perturbing en­

vironmental influences by evaluating the angle p. The total vector 
direction indication error,  y ,  follows directly from Equation 2.4-97 

The techniques by which alignment is effected fall into two 

distinct categories: Direct Measurement Techniques and Transfer 

Techniques. Recalling the definition of alignment, angular coin­
cidence is sought between the dependent reference frame (Section 
2. 2. 2 )  and the independent reference frame (Section 2. 2. 1) of Figure 

2-1.  This is accomplished by measurements on at'least two non­

collinear vectors. In direct measurement techniques, equipment 
associated with the dependent reference frame measures vector 

quantities which have a unique geometrical relationship to the in­

dependent reference frame. This geometrical relationship con­
stitutes a priori  information'which must be available to the depend­

ent reference frame. A simple example is the measurement of 
coupled with the knowledge that it lies along one axis of a local 

geographic coordinate frame. 
In transfer techniques, equipment associated with the de­

pendent reference frame measures vector quantities which do not 
necessarily have an a priori  geometrical relationship to the in­

dependent reference frame. Rather, an intermediate (Section 2. 2. 3) 

o r  transfer (Section 2 . 2 . 4 )  reference frame simultaneously 

measures the same vector quantity as the dependent reference 

frame. This second measurement serves  to  establish the geomet­
rical  significance of the vector with respect to a mechanized 

representation of the independent reference frame. Once deter­
mined, of course, this information must be communicated to  the 

dependent system. The vector, as a common sensory input to 
both systems, is serving only as an information transfer medium. 

Of the measurement techniques listed earlier, the first four are 
in the direct measurement category; the remainder are in the 

transfer category. 

Pr ior  to examining individual techniques, we call attention 
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to one further distinction. Indicating the particular direction known 
a s  the vertical is wel l  enough solved in both.theory and application 
as to be the most widely acceptable measurement for moving base 
alignment. In fact, because of the tendency to rely upon the ver­
tical to provide one of the two required vector inputs, the moving 
base literature is largely oriented to the single vector problem of 
azimuth determination. For this reason, many of the techniques 
discussed later in this chapter a r e  intended only for azimuth align­
ment of a system which is already correctly oriented with respect 
to the vertical. 

3. 2 Vertical Indication 
We consider here the fundamental limitations in locating 

the vertical direction by means of specific force measurements. 
The specific force sensor employed for vertical indication on a 
moving base is the accelerometer. Devices such as a spirit level 
a r e  often employed in a more benign environment but do not pos­
sess the combined dynamic range and accuracy of which acceler­
ometers a r e  capable. We are interested in quantifying how well  
the accelerometer can measure a specific force vector and how 
well this vector' s direction represents the vertical direction. 

The independent reference frame for vertical indication is 
an earth fixed reference frame. This reflects the unique geomet­
rical  relationship between the vertical direction at a point and the 
earth. According to Wrigley13 

"The Vertical at a point on the Ea r th ' s  surface is 
defined a s  the local direction of the force of gravity 
as indicated by a plumb bob hanging from a base 
that is stationary relative to  the Earth. The hori­
zontal plane is defined as the plane perpendicular 
to the vertical, or as the surfacesof a free liquid

1 1under the influence of gravity alone. 
Note that although the vertical is intimately related to 

a physical vector, it is not itself a vector. It is merely a signed 
direction. This is a s  stated in Section 2. 3.  1: when a vector is the 
input to the alignment problem, only its direction is of ultimate 
interest. There is no requirement to exp1icit;y compute the 
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magnitude of the gravity vector and, therefore, no requirement to 

perform a complete vector measurement. 

In considering vertical indication from a car r ie r  operating 

above o r  below the ear th 's  surface, the local vertical is under­

stood to imply the direction of the extended plumb bob vertical 
passing through the center of measurement of a n  inertial system. 

Additionally, we assume that deviations in the direction and mag­
nitude of gravity (;) a r e  generally negligible within the volume of 

space occupied by a carrying vehicle. For an analytic gravity field 

non-parallelism is only on the order of 0. 01 a r c  second per fbot 
of separation in the horizontal plane. By comparison, gravity 

anomalies may cause parallel gravity vectors to appear at points 
/ 17 on the earth's surface within a subtended angle of 15 a r c  seconds. 

Of far greatef significance to the vertical indication prob­
lem is the difference between the "dynamic" (or apparent) vertical 

and the "static" (or true) vertical. The true and apparent verticals 
are defined respectively by the directions of gravity (z)and total 

specific force (TI. Depending upon one's point of view, either the 

apparent vertical is an imperfect representation of the true ver­

tical Qrthe true vertical is a special case of the apparent vertical 
occurring when the measuring system is at res t  with respect to the 
earth. Since only the true vertical has a unique geometrical mean­
ing with respect to the earth, we adopt the former point of view. 
That is, by severing the connection between the system and the 

earth, .weinvite base motion to destroy the uniqueness of the quan­

tity we are able to measure. Error-free accelerometers a r e  only 

capable of indicating the direction off; they require additional in­
telligence to deduce the direction of g from that of f. In essence, 
we must now process the moving base measurements in order to 

obtain an equivalent fixed-base indication. 

Relative to the format of Chapter 11, the angular discrep-
A 

ancy between gand  f is geometrically defined by 6.  (See FigWe. %27 
reproduced here as Figure 2-1, but 'with the vector designations 
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to Vertical Indication 
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appropriate for vertical indication. ) The problem of deducing 

the direction of g f r o m f  is equivalent to  forcing 6 to  zero. The 
limited instrument capability to accurately indicate the direction of T 
is given by the appropriate angle cy (relative to the instrument con­
figuratim employed) 

3 .  2. 1 Evaluation of p for Vertical Indication 
A small  angular difference ( p )  between the t rue and 

apparent verticals is described by 

For most conditions of interest, 

and 

p ” - ( i g  x T )  
g 

3.2-1 

from which it is seen that the horizontal component of fdef lec ts  

the vertical at the rate of 1 minute of a r c  for each 290 micro-g, 

A mathematical relationship between and 7 is 
obtained in convenient form by expressing the inertially referred 

acceleration of a point as the vector sum of component acceler­
:: 

ations referred to several coordinate systems. Using the four co­-
ordinate frames and position vectors defined byFigure 3-2, f at point 

D mag”be written as 
-- ­ 2 ­

f = G - p I  RID 

3.2-2 

* 	See Appendix D, Reference 13  for a detailed mathematical 
development. 
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I 	 i s  center of an inert ial  system - no atceleration relative 
to fixed space 

E i s  center of the earth; origin of axes fixed in the earth 

C 	 i s  center of gravity of the carrying vehicle; origin of 
axes fixed in the vehicle 

D 	 i s  center of dependent reference frame; origin of axes 
fixed in the inert ial  measuring unit 

Figure 3-2 Vector Representation by Components of the 
Position of the Center of Measurement of an Inertial 
Measuring Unit in Motion with Respect to the Earth 
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where 

pi is the time derivative operator in the subscripted 

coordinate frame-
WEC 	 is the angular velocity of the vehicle about its 

center of gravity measured with respect to the 

earth-
WIE is the angular velocity of the ear th  with respect to 

an inertial frame-

G is the gravitation at point D 


Equation 3 .  2-2 is equally valid for vehicles opera­

ting below, on o r  above the surface of the earth. Figure 3-2 
merely depicts an extra-terrestrial  vehicle for convenience. 

-
In assuming that f is the specific force measured 

by the IMU's  accelerometers, we  ignore a slight refinement oc­

casioned by the required pendulosity of the instruments. A more 

complete characterization only results in additional t e rms  of 
negligible magnitude. 

A s  an initial simplification of E ~ u ~ I F c T ;2 .  2 . . f ,  t1.c terms 
included in the first bracket make no significant contribution to-
f. They will,  therefore, be dropped. Furthermore, the definition 

of the observed local acceleration of gravity, 2, at point D 

allows two te rms  to be combined. These simplifications result in-
the following expression for f 

Bracketed in Equatian 3 .  2-4  a;.e the terms which corrupt 

the physical observable representing the vertical. We a r e  inter­

ested in their horizontal components. The physical sources of the 

interference a r e  motions of the vehicle relative to the earth and 
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dynamic behavior of the vehicle as  a non-rigid base. Notice that 
static alignment accuracies between the C and D frames a r e  not 
important. In the absence of system motion with respect to the-
earth, f = 2, whereas, in the face of significant base motion, the 

magnitude of /3 (Equation 3. 2-1)  is sufficient to require compensatory 

modification of the accelerometer's raw outputs. Certain terms 

of Equation 3.2-4 a r e  known, in fact, as  1 1  acceleration compen­

sation terms.  When compensation is employed, Figure 3- 1 


is still accurate for e r r o r  determination provided /3 now 

represents the residual uncertainties for the compensation 

process. 


The corhpensation requirements for individual appli­
cations a r e  derived in a straightforward manner from Equations 
3 . 2 - 1  and 3.2-4. However, the requirements a r e  too strongly 
related to  parameters such as desired accuracy, vehicle config­
uration, vehicle speed and expected maneuvers to permit general 
quantitative conclusions here. We can discuss, however, the al­
ternate means of compensation. 

Compensation of the output of a sensor (or some 
deterministically derived function thereof) is basically of two . 
types: 1) signal modification by filtering; and 2) signal modification 
by the addition of an externally derived signal. Depending on the 
character of the base motion, these techniques may be employed 
separately or simultaneously. The attraction of signal filtering is 
that it may be mechanized on a self-contained basis without addi­
tional sensory requirements. Unfortunately, it is limited in i ts  
ability to discriminate between signal components on any basis 
other than frequency. Externally derived compensation signals, 
while imposing the requirement for additional sensory equipment, 
a r e  capable of accurately discriminating between like frequency 
signals on an amplitude basis. Filtering also may be applied directly 
to the output of external sensors in order to reduce the noise 
associated with these measurements. 

The frequency at which? is observed depends only on 
the relative motion between the dependent reference frame and 103 
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g. By Equation 3 .  2-4, angular motion of the tl 's A.;;II~ ;'ralme ddes not 
affect 7. Therefore, the frequency modulation of by platform 

motion is reflected in the same fashion by all t e r m s  of f. This 

permits us to arbitrari ly choose to examine base motion inter­
ference from a frame in which2  is a zero frequency quantity. 

(Note that this res t r ic ts  only two degrees of freedom of the plat­
form. ) 

A s  to motion of the carrying vehicle relative to the 

earth, Brock 1 states that the filtering proble'm is greatly aided if 
the vehicle is controlled so that the velocity (vector) between ma­

neuvers fluctuates only slightly from some nominal value. An 

examination of Equa,tion 3.  2-4  shoii.is tiiai this .if;  indeed a help in r e ­

ducing bias accelerations. Yet for the very condition of constant - -
velocity, a bias Coriolis acceleration (2 uIE x pERED) deflects 

the vertical at the rate  of 2. 2 9  x sin X minutes of a r c  per 
mile per hour of horizontal speed (X = latitude). For a ship at 

high latitudes this might approach a value as high as one a r c  min­

ute. For  a subsonic airplane it might easily approach 10 a r c  

minutes. This te rm wil l  generally have to be compensated, re­

quiring thereby sensors capable of providing a measure of the-
vehicle velocity pERED. 

A measure of the high bias accelerations generated 
2 ­by vehicle maneuvers is given by the term pE REC evaluated at 

constant speed. The radial accelerations at constant speed a r e  
plotted in Figure 3 - 3 .  Note that a man walking a t  5 miles p e r  hour 

around a circular path of one mile radius experiences a constant 

vertical deflection of one a r c  minute, While these high maneuver 
accelerations make vertical indication difficult, they a r e  indis­

pensable to the vector matching technique of Section 3 .  5. 

An example of an easily filterable horizontal accel­

eration is that due to vibrational modes of the vehicle. Given a 
suitable period of observation, physical constraints prohibit p2 -R- C CD 
from making any net contkibution to f .  This is t rue even in a 
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Figure 3 - 3  Deflection of the Vertical, p, as a Function of 
Horizontal Speed and Pa th  Radius of Curvature  
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violent environment .such a s  a missile under the wing of an air­
plane. The time required to discriminate against this (and any 

filterable quantity) is determined by the vibrational spectrql 

characteristics, the nature of the filter, and the amount of noise 

suppression required. 

Schuler tuning,is, of course, a unique form of f i l ­
tering whereby the vehicle's tangential acceleration becomes an 

aid in tracking the vertical rather than a quantity to be discrim­

inated against. This concept and the attendant damping problems 
a r e  thoroughly considered in the literature. 

3, 2. 2 Evaluation of CY for Vertical Indication 

Measurement of the specific force vector's direction 

using single-degree-of-freedom accelerometers requires either 

two or  three instruments. With two accelerometers, they must 

be servo-controlled to enable orientation of their sensitive axes 
in the null plane. This represents by far the most common mech­

anization of vertical indication. From Tables 2-2  and 2-3 (with 

2 2 
"SA = 2"sa 

so that 

3. 2-5 

by Equation 2.4-48. 

For three accelerometers, it is beneficial but not 
required to specially orient the sensitive axes. The tables yield 

- ­ '5"2 ='z CYsa3 2  + 2\ a. /g)2 +DAz,cJ-c0s4@) 3. 2-6  
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-
2In Equations 3. .2-5and 3.2-6,  (Y is the mean-square
sa 

sensitive axis uncertainty of each instrument expressed in radian 
CJ 
measure to the second power, a 0 is the standard deviation of 

1 1  I Iaccelerometer bias expressed in equivalent g 's ,  and (T is the 

standard deviation of accelerometer scale factor (a dimensionless 

quantity sometimes expressed in units of g/g). Notice that with 
either two or three accelrometers , vertical indication accuracy 
is inherently bias limited. 

3. 3 Gyrocompassing 

The interpretation of the te rm "gyrocompass"' (the pre­
cursor of gyrocompassing) has remained unambiguous, that being 
a pendulous gyroscopic element arranged to track the horizontal 
component of the ear th 's  daily rotation (WIE)" The term ''gyro­

1 1compassing, on the other hand, has become subject to much 
looser interpretation, to the point that it more connotes the gen­
e ra l  process of aligning by means of an angular velocity vector 
than it does the specific process'of aligning to ZIEby a particular 
mechanization. We restrict  our attention here to the vector GI, 
and investigate the fundamental limitations in establishing its 
direction with gyroscopic sensors mounted on a moving base. 

The unique geometrical relationship between the direction 
of 5IE and the ear th 's  polar axis dictates that the independent ref­
erence frame be an earth-fixed reference frame. This is the same 
frame employed for vertical indication. Base motion relative to 
this frame, it wi l l  be shown, generally can cause severe bias de­
flections of the measured angular velocity relative to zIE. 

Prior  to evaluating cy and p, let us briefly consider a prac­
tical example of the importance of determining system alignment 
accuracy relative to instrument performance. The majority of' 
operational situations requiring alignment of a dependent frame in 
a mobile environment wi l l  employ the dependent frame, once aligned, 
for a relatively short period of time. In such Situations, gyros with 
only moderate drift performance may be capable of maintaining the 
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dependent reference frame with sufficient accuracy. The prac­
tical advantages inherent in the use of such gyros a r e  numerous. 
It is desirable, in such situations, that the alignment scheme not 

require a level of gyro performance better than that required for 

guidance. Thus, although gyros of sufficient performance to per­

mit gyroscopic alignment may be within the current technological 
capability, such alignment methods must often be ruled out. The 

uniform presentation of performance parameters developed in this 

thesis is an aid in making such a decision. 

3.  3 .  1 Evaluation of 6 for Gyrocompassing 

ReferrFngto Figure 3 . 2  the angular velocity relative-
to inertial space sensed by the dependent frame gyros, uID, is 

expressed a s  the simple vector sum 
- - -
WID = W I E  ,+ WEC + WCD 3 .  3-1 

An angular difference ( P )  between the direction of ljID and the ear th 's  

polar axis is described by 

3.  3 - 2  


We must defer temporarily an explicit solution of 3 .  3 - 2  for p. A s  
mentioned ear l ier ,  the possible base motion influence here is much 
more severe than that found in vertical indication. Gravity is a 

field force; its influence is felt even when removed from stable con­

tact with non-force motion-parameters such as zlE. One of the 

better advertised "problems" of angular ra te  sensing is that a 
westward speed of approximately 1040 cos X mph (A e: lattitude) 
cancels wLF:completely (Equation 3 . 3- 2  is then indeterminate. 

Rather than fearing the lack of a quantity to  sense, one should be 

more concerned that a reduced magnitude vector input always 

increases the indication e r r o r  (See Table 2-3). Hovorka2 concludes 

from the masking of ear th  rate by vehicle s-peed that gyrocompassing 
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is a slow-vehicle process,  Independent of the rationale, this is 
a widely held viewpoint, 

To the extent that the dependent frame is caged t o  the -
vehicle, CD represents structural angular vibrations of the 
vehicle. If the structure cannot assume quasi-static deflections,-
aCD must have zero-average value; if the structure does assume 
quasi-static deflections, the average value o f z C Dtends to zero 
over an extended period of observation, It appears, therefore,-
that aCDcan be successfully filtered from the gyro's output. 
This we wil l  assume, with the understanding that it may only-
be a first approximation. Even if  aCDhas a zero average value, 
the gyro output may well have a non-zero average indication of-

CD due to "kinematic rectification" 21 o r  "coning. 1 1  22,23 

The magnitude of a problem such as this is strongly related to 
design details and i ts  examination is beyond the scope of this 
thesis ., 

-
If we set CD to  zero in 3.3-1 and assume that the carry­

ing vehicle is; restricted to motion in the local horizontal plane, 
Eq 3.3-2 may be evalueated with the result 

vN 
sin p = 3.3-3 

+ V2/R? 'I2 

where V is the vehicle groundspeed, VN is the northerly component 
of groundspeed and R is the distance of the vehicle from the center 
of the earth. Notice that even at constant speed and constant head­
ing, p may have a bias value which is non-filterable. 

The problem of forcing p to  zero is equivalent to forcing 
VN to zero,  This may be accomplished obviously by heading due 
east or west,  o r ,  in fact, by stopping the vehicle. It may also 
be accomplished by an external source of ve1ocity.informati on 
(such as Doppler radar ,  airspeed indicator or pitometer log) which 
provides a signal to  compensate the gyro output.. Any one of these 

situations serves  to  place the measured vector collinear with its 
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meaningful orientation. The compensation process effectively 
re-couples the gyros to  the ear th ,  

It is recognized that e r r o r s  wil l  exist in any auxiliary 

reference and that their nature wil l  vary,  Let u s  assume that the 
reference is subject to bias e r r o r s  (a,) and sensitivity e r r o r s  

(Aa,). Bias e r r o r s  may exist simply because speed is measured 
relative to  a medium (air, water) which itself is in motion 

relative to  the earth.  Sensitivity e r r o r s  wil l  be sensor related 
but may correlate with the environment, a s  in the gain shift of 

Doppler radar  with varying terrain reflectivity, 

When such a compensating reference is used,Equatioii 3 . 3 - 4  

becomes 

3 . 3 - 4  

which, if the reference e r r o r  coefficients have zero mean value 

and we neglect the second order effect of an e r r o r  in the total 
velocity measurement, has a mean square value 

3 . 3 - 5  

It is noted that in developing this expression we have neglected an 

additional second order correction due to  imperfect resolution of 
total measured velocity into north and east  components. Details 

such as this must be considered at the design stage. 
(J

In Equati.on 3.  3- 5, a. is t;T.e staridard deviation of velocity bias 
expressed in the same units as VN (feet per second, miles per 

hour, etc.  ) and o~~ , is the standard deviation of velocity scale 
1 

factor (a dimensionless quantity), As an indication of the order of 

magnitude of these standard deviations, Reference 24 states that 
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the accuracy of modern Doppler radar approaehes 0.170; CI is 
Aal 

thereby implied of the order of 0.001. Uncompensated northerly 
groundspeed deflects wm at the rate of 1 arc-minute per 0 . 3  miles 
per  hour. In a 3 0 0  mph plane using 0.170speed measurement, 
p has at least a one arc-minute value for northerly flight, 

3 . 3 . 2  Evaluation of a for Gyroeompassing 

Measurement of the direction of the angular velocity-
vector, 0ID, requires two or three single-degree-of-freedom 

gyros. With two gyros, they must be servo-eontrolled to  enable 
orientation of their sensitive axes in the null plane. From 

Tables 2-2 and 2-3 (with I I Z Iw m  I ) 

so that 

3 . 3 - 6  

With three gyros, the tables yield 

3 . 3 - 7  

One of the more common system mechanizations places one gyro 
east ,  one north, and one either parallel or anti-parallel to  the 
gravity vector. In this case, 3 . 3 - 7  becomes 

4 4 
a = - a2 sa Aal

(1 - cos x - sin A )  

3 . 3 - 8  
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- -  - 

w h e r e  X = lattitude. -
In these equations, (r2 is the mean square sensitive axis sa 

uncertainty of each instrument expressed in radian measure to 

the second power, 0a
0 

is the standard deviation of bias gyro-
drii't expressed in the same units as uIE, 'and oAa is the 

1 
standard deviation of gyro scale factor ( a dimensionless quantity). 

Notice that with either two or  three gyros, thk directional indica­
tion is bias limited. -

The total e r r o r ,  y, in indicating the direction of u I E  is 

described geometrically by Figure 3-4 (See also Figures 3- 1 and 
2-27) and the mean square value is given analytically as 

2 2 y = c t  + P2 2.4-9 

COMPENSAT 
DIRECTION 

-
W 

I D  

WIE 

INDICATED 
DIRECTION 

Figure 3- 4 Geometric Quantities Relevant to Gyrocompassing 
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3.3 .3  A Special One-Gyro Situation 

An imports :it gyrocompassing system mechanization 1 , 2 , 1 7  

relies upon accelerometer measurements to place the sensitive 
axis of a single gyroscope in the horizontal plane. The gyro axis 
is also adjusted in the plane until it detects no component of earth 
rate's horizontal component, By this process, the gyro's input 
axis indicates an aximuth line precisely 90° from true north, 

In the context of Chapter 11, this is a single instrument 
nulling on a vector component of magnitude (0IE cos X ). From 

Table 2-3, the transducer e r r o r  is described by 

-
"T

2 -- (aao/O IE cos $2 3.3-9 

This, however, is not the complete story. Whereas a sensor is 
insensitive to rotations about a vector, it is certainly sensitive 
to rotations about a component of a vector. A vertical e r r o r  of 

about a north-south axis causes thee vn 
ent of earth ra te 's  vertical component of 
Equation 3.3-9 is corrected to read 

-
2aT = (Yao,LiE cos )̂z 

gyro to  sense a compon­
magnitude (eVn0 IE sin X ). 

+ e t n t a n2 - 3.3-10x 

The total mean-square e r ror  in azimuth indication is given by 

3.3-11 

-
2-where aSa is the gyro's mean-square input axis uncertainty, 

a2Tisgivenby3.3-10, a n d @2 i sg ivenby3 .3 -5 .  

3.4 Star Tracking 

Unless a star tracker is a necessary part of the carrying 
vehicle Is navigation equipment, it represents equipment provided 

solely for alignment. This implies that measurements of the 
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dependent f rame's  inertial sensors are unable to provide a suitable 
alignment, The usual military application of s t a r  t racker  align­

ment relates to aligning a pre-leveled inertial system in azimuth; 

this requires one s t a r  sighting. Full three axis alignment is 

possible with two star sights. 

In spite of the numerous design options available in the 

system application of s ta r  trackers25, the basic problem remains 

one of accurately determining the line of sight (LOS) to a s t a r .  
The vector input to the star tracking process is electromagnetic 
in nature, coincident vith the position vector f rom the s ta r  to the 

system, The line of sight is concerned only with this vector's 

direction, It is possible, with an appropriate star and t racker ,  
to determine an LOS within several a r c  seconds, even in daylight, 

The independent reference frame for s ta r  tracker alignment 

is the inertial frame. A s ta r  tracker can measure directly in 
this frame, thereby not requiring a master  inertial system. With 

accurate time and position informatioa, it is possible to translate 
the inertial frame measurements to an earth fixed reference frame. 

Figure 3-5 (See also Figure 2 - 2 7 )  casts the s ta r  tracking 

problem in the context of Chapter 11. The angle LY is measured 
from the s ta r  line-of-sight to the tracker-indicated LOS. The angle 
p accounts for those situations (See Section 3. 4 .  1 below) where 
the transfer of s ta r  LOS information to the inertial sensor 

package produces an apparent deflection in the indicated line-of­

sight. The total e r ro r ,  y, in measuring the s ta r  LOS is measured 
from the s ta r  LOS to the platform indicated LOS. 

3 .  4 .  1 Discussion of p for Star Tracking 

Reference 25 informs u s  that military-type applications 

usually do not allow star  trackers to be platform mounted. This 
is normally a mission oriented constraint required to provide the 
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TRACKER INDICATED 
L I N E  OF SIGHT 

PLATFORM INDICATED 
L I N E  OFSIGHT 

Figure 3 - 5  Error  Geometry Appropriate to Star Tracking 

tracker with an unobstructed view of the celestial sphere. As 
mentioned earlier,  the technology is available (when the situation 
warrants) to provide values of CY on the order of a few seconds of 
a r c .  Unless /3 is restrained to this same order of magnitude, it 
represents the limiting factor on s tar  tracker azimuth. 

A simple way to visualize /3 is to consider the whole 
angle description of the rotation between the dependent frame and 
a coordinate frame fixed in the case of the tracker.  The projection 
of this angle along the indicated line of sight is of no consequence; 
the perpendicular component is the angle p .  This presents us 
with a simple rule of thumb: when employing s ta r  trackers 
physically separated from the inertial sensors ,  the e r r o r  due to 
this separation is reduced by placing the line of sight as nearly 
coincident with the principal flexure axis as possible. 
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p may contain significant static, quasi-static and dynamic 

portions, The static portion is a result of inaccurate installation 

of the tracker and system. It exists when, say , an a i rc raf t ' i s  
on the ground or a ship is in port. Quasi-static contributions 

to p arise from approximately constant angular deflections of the 
carrying vehicle related to  the average stress condition changes 
induced by motion of the vehicle (e.g .  , aerodynamic loading of 

wings and pylons) and by environmental changes (e. g . ,  thermal 

gradient loading). The dynamic portion of p is caused by excita­

tion of the angular vibration modes of the craft .  Total relative 

angular excursions between two points in the same vehicle may 

we l l  be as large as 10' (Reference 3 ) +  

Since p is strictly an angle transfer problem, it is 
theoretically possible to compensate the non-rigid transfer 

medium by means of optical comparison between the tracker and 

inertial system. This compensation is attractive but is not 

without its practical problems (See Section 3 , 8). 

In the absence of data which conclusively prove for a 
given application that p is either negligible or compensable by 

non-optical means , proposals to use a physically separate s t a r  
tracker without optical compensation of flexural base motion 
should be viewed skeptically. When mission and economic con­

straints permit, alignment accuracies wil l  be enhanced by mount­
ing the s t a r  tracker integral with the inertial sensors .  It is 
wasteful to measure quantities better than you can transfer the 
information about those quantities 

3 ,  4 .2  Comment on �or Star Tracking
~ _ _- .. - . -

The basic optics and detector of a s ta r  t racker  are the 
fundamental physical limitations on determining a line - .f-sig:'ht, 
A frequently used figure of merit which describes this limitation26 

is called the "tracking accyracy, I '  This accuracy number is 
identical with the parameter Q ,  
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Rotations about a starline cannot be distinguished by the 
combination of optics and detector. On this basis, the conical, 

constant probability density locus interpretations used in deriving 
CY (Section 2 . 4 . 2 . 1 )  are a valid interpretation of fundamental 
star tracking limitations. The reader is cautioned, however, 
that the uniform statistics afforded by a vector viewpoint, when 
processed through angle transformations to obtain a component 
viewpoint, may lose the interpretation used in this thesis. 

3 . 5  Fix Monitored Azimuth 

Fix monitored azimuth is a method of employing check­
point data to align a pre-leveled platform in azimuth. In common 
with all usages of checkpoint information::: (position reference) 
to reduce the effects of system and component e r r o r  sources, 
fix monitored azimuth (FMA) is completely dependent on the 
accuracy of a model, The fundamental premise of FMA is that 

azimuth misalignment is not only the dominant source of position 
e r r o r  during the time interval considered but is also nearly 
constant in this period. Given this model, the principle of FMA 

is exceedingly simple. 

A pre-leveled system, f ree  from e r r o r  in every respect 
except a fixed azimuth misalignment (ea), begins to navigate at 
station A (Figure 3 - 6 )  with the expectation of arriving at Stati0n.B. 

NOTE : 

1%­
8, g is  normal 

into paper 
A: - 0  

Figure 3- 6 Lateral Error Propagation for Fixed Azimuth 
Misalignment 

'%Reference5, pp 31.2 f f ,  presents a concike description of several 
uses of position references. 
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The range from A to B is Ro. Due to ea, lateral  position e r r o r  

propagates approximately as 

6L = Rea 3 .  5-1 

so that after navigating a distance Ro the lateral e r r o r  magnitude 
at station B is ROOa. By measuring bL at  B and knowing the range-
vector Ro, the azimuth e r r o r  existing at A is calibrated and may 

be corrected, 

In the context of Chapter 11, the lateral e r r o r  vector LL-
is the input to the alignment process. From 6L we infer the 
discrepancy between the nominal and actual navigation paths. The -
magnitude of 6Li specifies the magnitude of 8, (equivalent to the-
general e r r o r  parameter CU)while the direction of 6Li relative to 
the range vector determines the sense of the required azimuth 
correction. The reference coordinate frame is that in which the 
checkpoints a r e  known. For direct azimuth alignment with respect 

to the earth, the checkpoints are physical observables (e.g . ,  terrain 
features, radio or radar  beacons) of known location. There is 
no reason, however, why any point in space where the vehicle's 

position can be calibrated should not suffice for the FMA method. 

Measurements of 6Li generally will  be imperfect, This 

leaves a residual uncertainty in the corrected azimuth at each 

checkpoint. A powerful means of reducing certain measurement 

e r r o r s  is to use multiple checkpoints. Let us now examine this,  

Allow e r r o r s  in the measurement of 6Li to be of the bias 
(a

0 
) and proportional (Aa,) types. The residual azimuth e r r o r  

(Ae,), at the ith checkpoint due to these e r r o r  sources may be 

expressed as a o +  Aa l  6Li 
(Ae,), = 3 ,  5-2 

Ri-l,i 
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Assuming that an azimuth misalignment estimate has been made 
at the previous (i-1)checkpoint, is actually the uncertainty 
in estimating the previous e r r o r  @ea),- 1, 6 L.

1 
may in fact, be 

expressed as 

3.5-3 

As long as the proportional measurement e r r o r  is dominant 
( A a ,  6Li > > a0 ) the azimuth uncertainty at the ith checkpoint 
is written (fromEquation 3. 5-2). 

Aa ,  6Li 
= 3,5-4 

Ri-l,i 

Substituting 3. 5-3 into 3,  5-4 yields the simple recursion 
relationship 

3.5-5 

Equation 3. 5-5 is very significant. It implies that every time 

we make a misalignment estimate, we obtain a fixed percentage 
reduction in the e r r o r  in our previous best estimate (Aa, < e 1). 

Iterating 3. 5-5 from the f i rs t  checkpoint [initial azimuth e r r o r  
to the nth checkpoint, the e r r o r  in estimating 

depends only on and the number of checkpoints (See Equation 

3 .  5-6). 

thThe reader is reminded that in going from the first to  the n 
point we have only estimated azimuth (n-1)times. 

The natural lower limit of this rapid convergence of the 
azimuth e r r o r  is provided by the bias e r r o r  (a,) existing in the 
measurement of 6Li' When the lateral e r r o r  is small enough 

so  that bias becomes dominant, we see from Equation 3. 5-2 that the 
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lower limit on azimuth correction is expressed as 

a 
(AOali = 0 3.5-7 

Ri-l ,  i 

Note that this is a function only of the bias measurement e r r o r  

and the range between the last two checkpoints. 

The convergence of the FMA process is so rapid that two 

or three inter-checkpoint legs suffice under most conditions to  

reach the bias limitation of 3 ,5-7 ,  In the face of a 10% propor­

tional measurement e r r o r ,  a 1 00 initial azimuth e r r o r  is' reduced 

to 6 arc-minutes after only two estimates. But on a 100 mile 

final leg, the bias e r r o r  must be no greater  than 150 feet to 
ensure azimuth alignment of 1 arc-minute. An arbi t rary increase 
in R.

1-1, i would seem to reduce (Ae,), to an arbitrari ly small 

level, The penalties here a r e  two-fold, First, it is a severe 
operational restriction to require large inter- checkpoir,t distzrcer,. 

Second, as the time to complete the FMA process increases, the 

validity of the model deteriorates rapidly. 

Let us examine this latter point briefly. If a constant, 

uncalibrated platform drift (D o / h r )  exists about the vertical,
V 

the lateral e r r o r  due to this drift propagates as 

6Li = 112 Dvt 2 .  3,5-8  

If a small constant platform drift (DR) exists about the range-
vector Ro, the lateral  e r r o r  propagates as 

6Li = 1 / 6  DRgt3 3.5-9 

For demonstration purposes, we sum the contributions of 

3.  5-3, 3 .  5-8, and 3 .  5-9 to 6Li, 
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6 L i = R  i-1, i (A ea) i-l + 1 / 2  Dvt 2 + 1/6  DRgt3 
3.5-10 

If the vehicle maintains a roughly constant speed, V, the lateral  
e r r o r  propagation due t o  azimuth e r r o r  is proportional to the t ime 
elapsed between points (i-1) and (i). It should be clear that the 

model postulated for a system using FMA is valid for a restricted 
t ime interval; from 3. 5-10, azimuth e r ro r  is dominant over the 
drift sources only if 

v ( A  'a'i- 1ti-1, i > 1 / 2  Dvt2 + 1 / 6  g DRt 3 . 
The higher the speed of the vehicle, the more applicable the 
technique. Fix monitored azimuth is basically a fast vehicle 
technique suggested for airborne missile applications. 

Er ror  sources other than system drift conspire to  destroy 
the validity of the FMA model (e. g., a steady state vertical e r r o r  
about Ro wil l  cause an azimuth e r r o r  to  be introduced even if  none 
existed previously.). The foregoing examples were merely by way 
of illustration. 

In this author's opinion the major deterrents to  more wide­
spread application of the f i x  monitored azimuth concept a r e  

1) 	The severe operational requirements imposed
by navigating a required course 

2 )  The inherently long reaction t ime 
3) 	The restricted validity of the model on which 

FMA is based 
Mitigation of the first objection would be obtained by provision of 
a master inertial system whose continuous navigation outputs 
serve for checkpoint comparison at chosen intervals. This does 
not evade the other objections, however, leaving other master-
slave configurations mor e desirable. 

We  present here for the sake of completeness a variation 
on the FMA procedure. It is a proposed means for the azimuth 
alignment of a pre-leveled aircraft navigator/. Referring to  Figure 3- 6, 
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checkpoints A and B are  at opposite ends of a calibrated runway. 

In other words, the direction of Eo is calibrated relative t o  t r u e  
-

north. If t h e  pilot holds the course of the plane very close t o  Ro 

during takeoff, then t h e  average direction of the plane's horizontal 
acceleration is well-known. This is sensed by the navigator's ac­
celervinet e r s  and used �or alignment, 

There are three  basic e r r o r  sources  in this scheme. 
First, if the pilot misses the takeoff point (B) by an amount d L ,  

the azimuth calibration is in e r r o r  by 
ea = ~ L / R. 

0 n 
On a lC,000 foot runway this amounts-to approximately 20 sec per  
foot of lateral e r r o r  Secondly, even if the pilot passes directly 

over B, any lateral velocity is an indication that the average ac­-
celeration vector does not lie along R o m  Thirdly, there  is the 

limited ability of the navigator's accelerometers t o  locate the 

average acceleration vector (given by the angle (Y of Chapter 11). 
It is relatively easy to  measure and compensate for the first two 
e r r o r s  but we do not wish to  consider this scheme in further 
detail here.  A s  with the basic F M A  technique, it s u f f e r s  f rom 

limited applicability 

3 ,  6 Vector Matching 

3 .  6,  1 "Memory" in Transfer Alimments 

Vector matching is the f i rs t  t ransfer  alignment 

technique (See Section 3 .  1) w e  will consider. A l l  t ransfer  tech­
niques are  concerned with aligning a dependent reference f rame 
t o  a pre-aligned intermediate frame. The inertial system asso­
ciated with the dependent f rame is often called a "slave", that 

associated with the intermediate f rame a "master". 

The analysis of t ransfer  alignment e r r o r s  relates 
t o  e r r o r s  developed between the mas ter  and slave only. The mas­
ter system is assumed perfectly pre-aligned t o  an independent 
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1 1reference frame. Any e r r o r  existing in the master ' s  memory" 
of the independent frame is necessarily transferred to  the slave 
system. The total e r r o r  in mechanizing a copy of the independent 
reference frame in a slave system is a linear superposition of the 
e r r o r  in the master ' s  memory and the e r r o r  in aligning the slave 
to  the master (See the functional diagram 2-1). A simple means 

of evaluating the total e r r o r  for specific cases is by superposing 
the whole angle rotations representing master system drift and 
master-slave misalignment. 

3.6.2 Vector Matching Theory and Mechanizations 

The concept of vector matching is to  constrain each 

of two systems to  have an identical attitude relative to a common 

vector. Since the vector acts only as  an intermediate variable, 
i ts  orientation in the independent reference frame is not con­
strained (and is automatically zero). In the case of inertial 
vectors this means we can uti l ize ''any'' acceleration vector, not 

just w e  can use " any'' angular velocity vector, not justTie .  

G r o s s  motions of the carrying vehicle a r e  turned to  good advan­
tage as  generators of vector quantities measurable by the system's 
inertial sensors*; they are no longer interfering motions. Nomi­
nally horizontal acceleration o r  velocity change vectors can be 
generated for azimuth alignment purposes by simple vehicle 
heading changes. 

Although the concept and basic mathematics of 
vector matching apply t o  every .measurable vector (inertial, 
magnetic, electromagnetic.) we restrict  out attention t o  those 
measurable by inertial sensors'**. Earlier analyses distinguish 

* Sutherlanda7 applies optimal linear estimation to  maneuver 
determination for an airborne problem. 

** The special case of "vector matching" by means of a light beam 
is discussed in Section 3 . 8 .  
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between acceleration matching and velocity matching in a manner 
which implies the existence of fundamental differences. These 
differences a r e  neither conceptual nor mathematical. The vec­

tor  discussed in the following development represents any vec­

tor, be it acceleration (linear o r  angular) o r  velocity (linear or  

angular). Any and all differences must lie in 

1) the ability to generate a particular vector 

2) 	 the instruments available to  measure 
vector quantities 

3) the resolution of the instruments. 

The mechanization of vector matching takes several  

forms. These a r e  well illustrated by the two-dimensional problem 
of Figure 3-7, corresponding to the historically important case of two 
platforms which have already been erected to the vertical (i.e . ,  

Z axes coincident) by some prior operation and which a r e  to be 

accurately aligned in azimuth by means of a vector matching pro­

cedure. If the two equivalent coordinate frames X1-Y1 and X2-Y2 

a r e  identically aligned -to the vector v (but not necessarily about 

the vector::), the magnitudes of the components of the vector 

measured along corresponding instrument axes wil l  be equal. 
Conversely, when the coordinate frames a r e  misaligned (by the 

angle 4 = 4 
Y 

= 4  ) the measured components wi l l  be different. 

Constraining the measured magnitude components to  be equal by 
slewing the slave system results in proper alignment. This mech­

anization seeks to  zero the orthogonal magnitude differences: 

AVx = Vxl - vx2 = v [cos $ - cos ($ + $I) ]  

3.6-la 

o r  

-
+Alignment about V is achieved by vertical erection. 
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F i g u r e  3 - 7  Geometry  for Azimuth Alignment 
by Vector  Matching. 

( R + A R ) w  /L/ SLAVE SYSTEM t w2 (R+AR) 

Figure 3-8 Different  Magnitude, Parallel Direction 
Accelera t ions  and Veloci t ies  Sensed  by Two Sys tems 

on a Common Base 
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where V 171 . Applying TaylorPsser ies  expansions about @ to  
Equation' 3.'671 yield; to first order  in 4 

3.6-2a 

o r  

A v  /v  AV-Y=YdJ - cos  @ 
v X l  3.6-2b 

Due to measurement e r rors ,  AVx and AV
Y 

will generally have 

non-zero minima with a corresponding residual misalignment. 
To the extent that there  are equal irreducible minima in the x 
and y channel measurements (i.e. AVx = AV

Y 
= AV), it becomes 

obvious that a judicious choice of the mechanized difference 

quantity guarantees a maximum azimuth misalignment- of 

3.6-3 

This occurs at @ = 45O and agrees with a b a s k  result of Chapter 

11. Equation 2.4-71 shows that independent s f  the vector match­

ing mechanization, the e r r o r  of each system i.n determining the-
direction of V is maximum at & = 450 

There may be situations where it is more advanta­

geous to numerically evaluate the misalignment angle rather than 

eliminate it by a continuous difference teehnique. The computed 

angle may then either be (1) stored within the system computer 

and accounted f o r  in all subsequent computations o r  (2) torqued 

out by a precision torquing procedure. Equation 3 . 6 - 4  evaluates 

4 in t e rms  of measured magnitude components. 
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3. 6. 3 Compensation for Platform Separation 

It has been shown in Chapter PI that alignment requires 

finding vector directions; magnitude measurements may be a 
means to  that end (e. g. , EquatioEs 3.6-1 and 3.6-4). A physical 

separation of two inertial systems attached to the same vehicle 
can cause both magnitude and direction differences in the maneuver-

generated vector a s  sensed by each system. 

Consider a s  an example a vehicle traveling in a perfect 

circle (Figure 3-2). The magnitude of the centripetal acceleration 
sensed by two systems separated a radial distance Ak differs by 
an amount ARw even though the sensed vectors a r e  collinear. 

Similarly, the tailgeritid velocity vectors differ in magnitude by 
A R w  even though the sensed vectors a r e  parallel. If the separa­

tion w e r e  tangential rather than radial, and both systems were equi­
distant from the center of rotation, then the magnitudes of the sensed 
vectors would be identical but their directions would differ. 

Directional differences must always be compensated; mag­
nitude differences, when employing schemes such as 3.6-1 and 
3. 6-4, must also be compensated. This is readily accomplished 
by measurements of the master  system together with information 
on relative system locations. 

~~3. 6. 4 The Vector Match Vertical - A Fallacy 

The existence of a pre-aligned master system which can 
calibrate horizontal accelerations of a vehicle presents' a strong 
temptation to  establish vertical blignment by vector matching in 
the horizontal plane. The following.statement should therefore 
be read carefully: It is impossible to  achieve accurate vertical 
alignment by acceleration matching in the horizontal plane unless 
an accurate azimuth alignment has been established first. This 
is simply because a component of 2 projected on an axis due t o  
vertical e r r o r  is indistinguishable from a projected component of 
horizontal acceleration. Yet both are subject to  the same 
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interpretation, namely vertical e r r o r .  Only if  azimuth alignment 
is perfect wi l l  the horizontal acceleration components sensed by 

the master and slave be equal and cancel when component dif­

ferences a r e  examined. 

The basic fallacy a r i ses  because we a r e  dealing with com­

ponents of a single vector. A s  discussed in Chapter 11, sensors 

a r e  only insensitive to rotations about the total vector. Rotations 
I 

about one component a r e  still  sensitive to the orthogonal com­

ponents, posing the problem of ambiguous data which must be r e ­

solved by other measurements. When dealing with components of 
a vector, one must keep track of all  the components at all  t imes.  

Although vertical erection by vector matching in the null 

plane of 2 has been shown improper, it is correct to consider the 

normal vertical erection process as a vector matching process 

in that one attempts to match the best estimate of the position of 
the gravity vector to a pre-determined attitude. It differs from 

the ordinary concept of vector matching in two ways: 1)the vec­
tor is naturally existing and 2 )  the desired relative orientation is 
known with respect to an independent reference frame, removing 

the need for a master system. 

It follows from this latter property that the possibility 

exists to require no data transfer link between master  and slave 

platforms during a vector matching alignment, even though the 
vector is artificially induced. This requires that the orientation 
of the vector be tightly controlled to a pre-determined orienta­

tion with respect to the master system reference axes. Since the 

vector is induced by a maneuver of the carrying vehicle, this is 
tantamount to precision control of the vehicle's dynamic path. A 
well known example of this type of control is maintaining the thrust 

vector of a missile through its center of gravity while adjusting 

the missile attitude with respect to the thrust vector. 
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The simplicity and reliability gained by use of this 

approach a r e  due mainly to  a reduction irz data paths and system 
interconnections. These advafitagea come only at the high cost 

of an obsolute restriction on discretionary maneuvers of the 
vehicle pilot or controller during the alignment period. The 

accuracy of alignment obtained with e ommunication between 
master and slave would be somewhat degraded by discretionary 
deviations from a prescribed maneuver pattern but this e r r o r  
would be bounded; without master-slave communication the e r r o r  

is obviously unbounded. 

3. 6 .  5 General Formulation of Vector Matching 

A single vector match is capable of fixing two degrees of 
angular freedom. The solution of the azimuth alignment problem 
by vector matching, since it reduces only one degree of angular 
freedom, is a special case. We investigate here the more general 

vector matching problem. 

A s  shown previously, the inability of a system 0f sensors to  
perfectly indicate the direction of an existing physical vector can be 
resolved into a single normalized e r r o r  angle, CY. When the mea­

surement apparatus is not directionally constrained about the 
measured vector, the constant probability density e r r o r  locus is a 
cone of half-angle a(FigUre3-9a). The tip of the mis-indicated 
vector describes a Eircle in a plane normal t o  the measured vec­
tor. A l l  points on this circle have a constant probability density. 
Normalizing the measured vector sets  the circlejs radius at CY. 

For separate systems using different instruments, the 

descriptions of the e r r o r s  made in measuring the direction of 
the match vector have the identical geometrical interpretation 

and, insofar as the effects of environment can be ignored, are 
statistically independent. Assuming that the corrections have 
been made t o  ensure collinearity of the normalized match vector 
(Section 3 .6 .  3) at all systems, the complete e r r o r  analysis for 
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Figure 3-9 Error Geometry for Vector Matching 
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n systems may be carr ied out in a plane diagram consisting of n 
concentric circles centered about the match vector. The case of 

greatest practical interest is n =2, which describes the alignment 
of a single slave to the master. The resultant misalignment @ 
between the dependent and intermediate frames for this case is 
defined in Fikure 3%. The angle q is identifiable as  the difference 
of two independent angles, each uniformly distributed on 0 - 2 ~ ~  

Application of the law of cosines to Figire 3-9b yields: 

3.6-5 

the statistics of which a r e  evaluated in Appendix B with the results 

3.6-6 

Mean Squared Value: CP = cy2m f a  
2 
s . 3 . 6 - 7  

whereE(k2 ) is a complete elliptic integral of the second kind and 

3. 6-8 
(cy m + c y s )  

Equation 3.6-6 cannot be further evaluated without complete 

knowledge of the probability density functions for am and cz
S' 

In keeping with the precedent established in Section 2.4.2. l., 

we wi l l  use the mean square misalignment as our performance 
index. 

The master  system wil l  ordinarily make more accurate 
measurements than the slave, i. e. i f  we make the identification 

- ­
2 2  

cy2S = q  CYm 3.6-9 

then q l l .  q may be thought of as  a quality factor o r  figure of 
merit upon whicl? systems a r e  compared. It relates the RMS 
total vector measurement capability of systems of:sensors a s  a 
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function of measurement method, number of sensors and quality 

of the sensors.  q is very simply calculated by using Equaticn 2 .  4-49, 

Tables 2-2 and 2-3 ,  and a little algebra. 'The mean-square 

misalignment resulting from a vector m d c t  is expressed as  a 

function of q and the measurement capabitity of the master system 

as  

3.6-10% 

or in te rms  of RMS quantities 

RMS
RMS am 

=(q2 + 1)l t 2  ; q z n  3.6-10b 

Note, for example, that with identical instrument configurations 
in the master and slave but with an across  the board order-of­

magnitudesavinginixtrumenk,quality (n = 10) in the slave, the 
contribution of the master system t o  the total misalignment is 
almost negligible. 

In order to  consider full three degree-of-freedom align­

ment by two vector matches, one merely obtains the angle @ for 
each of the vector matches and uses the results of Section 2.4.3 
to  calculate a composite misalignmmt for the entire system. 

3. 7 Gimbal Angle Matching 

The generic t e rm "gimbal angle matching" implies the 

comparison of signals from the attitude readout systems of each 

of two (ormore) inertial platforms in order to  bring the orien­
tations of their  stable members into angular coincidence. Here, 
as  in all methods involving comparison, the inertial orientation 

of one platform (master) is taken as an absolute reference and 

all  e r r o r s  in alignment of the second platform (slave) a r e  with 

respect to  this reference. Since the only controlled function is the 
orientation of each system's stable member with respect to  the 

base on which it is mounted, there  is a strong dependence on the 
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fidelity of reference information transmission by the base. This 
dependence is the most significant limitation of gimbal angle 
matching. Knowledge of this limitation is not new. The method 
of developing it here, however, is a new approch. 

Although a definite aid in the visualization of gimbal angle 
matching. there  is no requirement that the systems have identical 
gimbal arrangements, nor must they even have an equal number of 
gimbals. Accurate computation of appropriate constant trigono­
metric transformations of the attitude drive signals is technologi­
cally feasible and can adequately compensate for this difference. 
The treatment of any desired non-coincident axis orientation 
follows similarly. An example of the latter situation is the align­
ment of a preferred-axis-orientation missile platform to  a carry­
ing vehicle's geographically oriented navigational platform. 

Gimbal angle matching is the only alignment technique 
discussed in this thesis which is not applicable t o  "gimbal-less" 
o r  "strapdown" inertial measuring units. For  what insights it 
may provide, however, the forthcoming analysis does apply to  
strapdown systems if the transformations T1 and T2  a r e  replaced 
by the identity matrix. 

3.7. 1 Coordinate Transformations 

Referring to Figure 3-10, an arbitrari ly chosen set of 
orthogonal axes associated .with the stable member of the de­
pendent system is related to an orthogonal coordinate frame in 
its base by -.: 3.7-1 
and further related to  the coordinates at the base of the reference 
system by 
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Figure 3- 10 Symbolic Diagram of Gimbal Angle Matching Transformations 
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r 1 dl 

/ I 

r2 d2 

I / 

'3 d3-
3.7-2 

where T2 and T3 a r e  square matrices of order three. For the 

master system we may write 

3.7-3 

Equating 3.7-2 and 3.7-3 

= :] 
d3 

3.7-4 
relates the stable member coordinates of the two systems. The 

elements of T 1 and T2 a r e  functions of their  respective system's 

attitude signals and possibly some constants; the elements of T3 

are functions of the parameters chosen to  describe flexure of the 
base. This flexure may be divided into quasi-static and dynamic 
parts. The quasi-static flexure is an approximately constant 
deformation of the base which varies with the average stress 
conditions induced by conditions of motion. The lldroop'l of an 

aircraft wing as  a function of fuel  load, speed, etc. is an example 
of quasi-static flexure. A l l  other base flexure constitutes the 



dynamic portion. In addition to parameters of flexure it is con­

venient to  include in the matrix T3  those constants necessary to 

describe the initial relative misalignment of the bases occurring 

at the t ime of system installation. 

Premultiplying both sides of 3.7-4 by the inverse of T1 

(denoted by T1-') yields the more useful and traditional repre­

sentation of gimbal angle matching 

'1 dl 

'2 -- T1 T3 T2  d2 

3.7-5 

where the unbracketed letters T .  represent the previously
1 


introduced 3 X 3 matrices. Without loss of generality we may 

assume that the desired alignment corresponds to  parallelism 
between (r1' 

r2, r3) a n d  (dl, d2, dg) respectively and also 
I f I / I t 

between (rl ,  r2, r3)and (dl, d2, dg). A n y  transformation re ­

quired to  force the physical situation into agreement with this 

condition is constant, is assumed arbitrari ly accurate, and 

hence does not enter the ensuing e r r o r  analysis. 

3, 7 . 2  E r r o r  Analysis 

The condition of angular coincidence between the two 

stable members is mathematically defined by 

T1-1 T 3 T 2  = I  3.7-6 

where I is the identity matrix. Under the simplifying restrictions 

of Section 3.  7. 1 and temporarily neglecting e r r o r s  in the attitude 
systems we may specialize 3.7-6 to require 
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T1 =T2 3.7-7a 

T3  = I  3.7-7b 

With 3. 7-6 and 3.7-7 as our  definition of the desired alignment, 
we proceed to investigate the errors inherent in gimbal angle 
matching. The whole angle rotation concept of Chapter I1 will 

b e  useful here. 

It is convenient to  define the two attitude systems by 

I 

T1 =T1 + E  1 3.7-8a 
I 

T2 = T2 + 3.7-8b 

where a primed transformation corresponds to the ideal commanded 
attitude of a stable member and E accounts for the difference 
between the actual and commanded attitudes caused by imperfect 
attitude readout equipment and imperSect Yttitude drives. The 
I t  matched" condition 3.7-7a is now T1 = T2 and 3.7-8b may be 
written a s  

I 

T2 = T l + e 2  3.7-9 
o r  using 3.7-8a 

T2 = T 1  + (e2 - 3.7- 10 

Substituting 3. 7- 10 into 3. 7- 5 gives 

T1- l  T~ T~ + T~- 1  T~ ( E 2  - E l j  = T 1 - 2  3.7-11 

a s  the transformation between stable member coordinates when 
flexure of the base and an imperfect attitude system a r e  considered. 
The transformation T1-2 is constrained to be orthogonal. 

By Equation 2.4-15, the magnitude of the whole angle rota­
tion described by T 1-2  is evaluated from the t race  of T 1-2  * 
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l l l l l  I 1  I l l  

Since the t r ace  of a sum of matrices equals the sum of the t races  

of each matrix, the e r r o r  contribution of each t e r m  of 3.7-11 t o  

Cp may be calculated separately. For  the first t e r m  of.3. 7-11 

-1tr T I  T g  T1 = t r  T3  3.7- 12  

This follows by application of the similarity argument developed 

in Equations 2.4-12 through 2.4- 15. The -physical implication of 

this result is that for assumed perfect attitude systems ( E  1 = c2  = 0) 

the misalignment angle magnitude is only a function of the para­

meters  of the base and the initial installation. This rather simple 

(but important) insight is emphasized by using the whole angle 

rotation for the e r r o r  parameter. Although it is frequently a 

matter of engineering practice to neglect attitude system e r r o r s  

in the face of much greater base flexure e r ro r s ,  the alignment 
3 e r r o r s  a r e  still calculated a s  a function of the gimbal angles . 

-1This results from carrying out the multiplieation T1 T3  T2 to  

obtain the direction cosines relating stable member reference 

axes and a subsequent appropriate combination of these elements 
to obtain azimuth and vertical e r rors .  A l l  that is accomplished 

by this lengthy calculation is to  find one particular coordinatized 

representation of the basic misalignment angle a .  Concern with 

the mathematical processes involved in multiplying three square 
third order matrices and the complexity of the resulting trigono­

metric e r r o r  expressions can easily obscure the simple geometry 

of the problem. The misalignment angle and the axis about which 

it is defined can be determined by reference to the base alone and 

then treated as geometric entities in space. The reduction of this 
e r r o r  into components in a particular coordinate system then pro­

ceeds directly without requiring reference to  intermediate quantities. 

If the e r r o r  axis is visualized a s  fixed in the 'carrying vehicle 

(base) and the attitude of the vehicle is specified with respect to  

a reference set  of navigational coordinates then the decomposition 
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of the alignment e r r o r  into components in the reference frame 
follows in a straightforward manner This approach permits 
visualization of the change in alignment e r r o r  as  a function of 
vehicle attitude without resort  to  the substitution of ' 'representa­
tive" numbers into a complicated trigonometric expression in 

order to further understanding of the result. 

Perhaps more importantly, it suggests the possibility 
of dynamically compensating the e r r o r s  due to  installation and 
flexure. The measurement of inter-base angular phenomena 

could be achieved by an optical calibration link, such a s  a three-

axis auto-collimation device which requires but a single light path. 
The cost-penalty of introducing equipment related only to align­
ment is minimized by affixing the relatively inexpensive passive 
portion of such systems to the dependent system. The more 

expensive active mechanism remains with the carrying vehicle. 
Because the link is between bases fixed relative to  the vehicle, 
turns of the vehicle do not disrupt the optical path. 

In the absence of a means for real-time base motion 
calibration, the accuracy realizable by gimbal angle matching 

is, for most vehicles, very crude (on the order of degrees). 
This technique then finds application only a s  a rapid, coarse 
alignment preceeding some other more accurate technique. The 

e r r o r  bound for gimbal angle matching is then determined by the 
uncalibrated static and quasi-static portions of tr Te3;the dynamic 
portion of tr T 3 may be eliminated by filtering. 

If compensation of t r  T3 is achieved to the order of a 

minute of a r c  or so, one must then undertake the alegebra asso­
ciated with the attitude system contribution to the total misalign­
ment, @ . From Equations 2. 4-15 and 3. 7-11 the relationship is 

COS @ = 1 / 2  T3 + t r  T1-1 T3 (e2 - el) 3.7- 13 
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-1While evaluating t r  T1 Tg  (ez  - E1) involves considerably more 

algebra then calculating t r  T 3' it is only one third the work of 
- 1calculating the tr iple matrix product T 1. TQtt - E 

3 .  7. 3 An Observation Regarding System Installation 

An observation regarding system installation on board a 
vehicle is prompted by the whole angle treatment. First ,  there 

are certain guidance system designs which can tolerate a cruder 
alignment about one axis than about the others. Second, the axis 

of the whole angle misalignment wil l  have a statistically preferred 
location relative to  the flexural mode axes of the vehicle. I� the 

system axis mentioned above and the predominant flexural mode 
axis a r e  made parallel, the alignment problem is reduced. This 

may require, however, that the platform be torqued to a different 

orientation pr ior  to inception of a mission. 

3. 8 Optical Alignment 

Optical alignment techniques a r e  inherently very accurate, 

very rapid and simple in concept. They have proved their merit 

at fixed launch sites,  particularly for  azimuth alignment. In the 

moving base environment, they a r e  an apparently attractive means 

for providing one, two or  three axis alignment of a dependent frame 

to  an intermediate frame (i.e . ,  slave to master) .  

Optical comparison techniques circumvent: the structural 

deflections of non-rigid bases. This is accomplished by establish­

ing a light beam as  a common reference between the systems. 
Provided a beam can be maintained between the master and slave 

systems, the systems need not even be carr ied aboard the same 

vehicle; the orientation of each is slaved to the electromagnetic 

vector. In truth, however, sufficient practical limitations exist 

that optical alignment on a moving base is normally dismissed as 
an impractical application. To this author's knowledge it has only 

been operationally employed in the submarine environment. 
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Not the least of the problem areas  is the provision of a 
line-of-sight between the systems. Permanent obstacles require 
that the beam containing alignment information be directed around 
these obstacles. The use of prisms, mir rors  or periscopes to  
direct the beam wil l  reintroduce to some degree the' very struc­
tural  deflections of the base we a r e  seeking to circumvent. Ad­
ditionally, even in the absence of structural deflection every 
reorientation of the beam is accomplished at the expense of 
angular e r r o r  and light loss. Personnel arid portable equipment 
must also be kept out of the beam's path. This might prove a 
very unwelcome restriction on an aircraft ca r r i e r ' s  flight deck. 
A s  with all alignment schemes, operational requirements and 

restrictions a r e  a major basis for the pre-selection of feasible 
techniques . 

The necessary provision of a suitable angular range is a 
significant restriction. A sufficient 'window" must exist to 
1) allow initial acquisition of the reflected beam and 2)  maintain 
the beam, once acquired, in the face of angular vibrations of the 
vehicle. At least one application (Reference 3) forsees a loo  
Master-Slave deflection. In an auto-collimating system, the 
angular range decreases a s  the separation of monitoring and 
monitored positions increases (See Figure 3- I1 ) o  

The feasibility of slaving one stable platform to another 

utilizing polarized light techniques has been demonsti.ated on a 
limited scale28. Although this procedure replaces the imaging 
problem of auto-collimation with simple light gathering, it is 
still restricted a s  to field of view. Both a u t o - ~ o l l i m a t i n g ~ ~and 
polarized systems28 now have the ability to  transmit three axis 
information over a single light path. 

The heading of the vehicle carrying the two inertial systems 
must normally be restrained while employing optical alignments. 
A s  shown in Figure 3-12, unless the stable members of both the 
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master and slave a r e  caged to the vehicle structure during turns, 
it is impossible to keep the two mir rors  in view. The caged mode 

of operation is an extremely unlikely one for a master navigator. 
If w e  a r e  considering strapdown systems, of course, no restr ic­
tion on the heading of the vehicle is necessary. 

The accuracy achievable with optical slaving depends on 
the equipment selected, the maximum range, and the operating 
environment (windows, thermal gradients, vibration, etc .), 

Accuracies generally range from a few seconds of a r c  to about 
one minute of arc per  axis. Equivalent whole angle misalign­

ments a r e  calculable from the formulas of Section 2.4.1 when a 
comparison with other schemes is desired. 

3 . 9  Summary 

The major accomplishments of this chapter are:  

1) 	Presentation of the basic theory of seven 
distinct alignment measurement techniques; 

2 )  	 Demonstration of the capacity of the unified 
alignment theory of Chapter I1 to properly 
include all the techniques; 

3) Exposition within the context of Chapter I1 
of the fundamental sensor and base motion 
limitations on alignment accuracy. 

It has been shown for  three of the direct measurement 
techniques (vertical indication, gyrocompassing, and s t a r  track­
ing) that base motion is responsible for an apparent deflection of 
the measured vector relative t o  the independent frame. Those 
filtering and compensation techniques required to res tore  a 
meaningful direction to  the measured vector have been enumerated. 

The fourth direct measurement technique (fix monitored 
azimuth) has been shown t o  successfully circumvent the problem 
of vector deflection by choosing to  measure an earth referenced 

position vector. However, operational constraints, the time-
limited validity of i ts  basic model and its reliance on special 
equipment conspire to  reduce its applicability. 
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The transfer techniques have been shown, t o  circumvent 

the vector deflection problem by employing a m&ster reference 

system. The vector imputs, rather than p c s s e s s k g  an a priori  
significance in an independent frame, & r echlibrated by the mas­

ter system. 

In the case of vector matching, the instrument limitations 
have been shown to be of the same form as  for vertical indication 

o r  gyrocompass ing. 'The e r r o r  magnitudes, however, vary with 

the amplitude of the match vector; the selection of a technique 

has set  p to zero. 

Angular deflections of the vehicle have been shown to  

limit the accuracy of gimbal angle matching. Although an old 

result, this was  derived in a new fashion and provided additional 

insights regarding preferred inst allat ions. 

Optical comparison techniques have been shown to  circun­
vent the angular deflections of non-rigid vehicles. The only 

drawbacks to this technique, other than linear and angular range 

limitations, have been described a s  operational in Lature. It 

r emains, wher e f easib1e an extreme1y a?.t ra.ct ive t echnique. 

There has been introduced in Section 3 . 6  an important, 

relative-quality factor, q. This factor describes the relative 

sensor limited capability of systems of sensors to indicate the 
direction of a common vector. .That it can be easily calculated 

for sensors of varying performance, non- identical configurations 

and varying orientations of the sensor configuratiom relative 
to  the vector input is a result of the consistent e r r o r  format of 

Chapter 11. 
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CHAPTER IV 

EXAMPLES OF UNIQUE OPERATIONAL SITUATIONS 

4.1 Introduction 
Two examples of unique operational situations a r e  dis­

cussed in this chapter. The first case, that of simultaneously 
aligning several  dependent systems in an airborne environment, 
reveals that measurements of a common input by multiple sys­
tems promises no simple improvement in the alignment of these 
systems over that obtained independently. The second case, that 

of aligning aircraft navigation systems on a ca r r i e r  at sea, demon­

strates the degree to  which operational considerations act as  a 
pre-filter on any alignment procedure selection. 

4.2 Multiple Airborne Systems 
A useful concept in weapons systems technology is that of 

a highly maneuveyable aircraft capable of employing multiple mis ­
siles. The independent alignmFnt of each missile's guidance sys­
tem relative to  a master system o r  to  an independent reference 
frame follows straightforwardly from the techniques of the pre­
ceeding chapter. W e  now inquire whether the simultaneous align­
ment of several  systems is advantageous from the viewpoint of 
improving the alignment accuracy of each individual system. 

This question is most relevant t o  the simultaneous align­
ment of n systems by measurement of a common physical vector, 
v (See Fig. 4-1). It is perfectly true that thia provides n indepen­

1

dent measurements of a single quantity. It is also wel l  known 
that multiple measurements of a scalar quantity reduce the effect 
of noise (or e r ro r )  in the measurement process. To the extent 
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S Y S T E M  I S Y S T E M  2 

NOTE :-
ALL V REPRESENT A COMMON VECTOR 

0 0 0 0 0 0 0 0  A" 
S Y S T E M  n 

Figure 4-1 Measurement by n Systems of One Vector 

that the e r ro r s  in each measurement are independent and that 
their variances a r e  equal. (i. e.  "identical systems") the va­

riance in the sample mean of a scalar  quantity is reduced by 

'/n. Let us s e e  how this applies to  the case at hand, namely 

multiple measurements of a vector quantity. 

The important parameters of a r e  its magnitude, V, 

and its direction. V is not only scalar,  it is invariant under 

coordinate transformations. Therefore, the measurements of 

V by each system represent independent estimates of the same 

quantity. Simple averaging provides an improved estimate of 

V which is meaningful to each system; the magnitude estimation 
capability of each individual system, however, has not been im­

proved at all. Overall knowledge of V is improved only because 

the invariance of V under coordinate transformation makes the 
measurement of V independent of the frame of reference. 

The direction of must be estimated in order to determine 

alignment. Although the direction of 7 is representable by scalar 

quantities, these scalars  (as  opposed to  V) a r e  not invariant under 
a coordinate transformation; direction (i. e., alignment) is a rela­

tive quantity. Different systems' measurements of the direction 
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of are  statistically independent estimates of unrelated varia­

bles. The fact that a common vector is being measured fails, 
in this case, t o  establish any dependency among the measure­
ments. In the absence of additional measurements to establish 
some dependence among the variables, multiple alignment does 

not hold forth the promise of a simply achieved improvement in 
alignment accuracy (as by averaging measurements o r  I I  voting"). 

There is yet another reason why additional measurements 
a r e  required to  improve alignment accuracy. In the measure­
ment of V, the quantity of interest (magnitude) is a physical ob­-
servable. In the measurement of the direction of V, however, 
the misalignment angle a is not a physical observable. Thus, 
the additional measurements required to improve alignment ac­
curacy not only introduce some dependence among the variables 
but also serve the more basic purpose of rendering CY physically 
observable. 

In answering whether the simultaneous alignment of se­
veral systems is advantageous from the viewpoint of improved 
alignment accuracy for each system, we summarize here a s  
follows : 

1) The existence of a single vector which is measured 
by several  systems allows us to improve easily our knowledge 
of the vector's magnitude but not of its direction; hence, align­
ment is not automatically improved by the existence of multiple 
systems measuring a common input. 

2 )  Misalignments can b e  reduced by means of additional 
measurements. 

The available magnitude improvement suggests the possi­
bility of performing an on-board calibration of certain sensor co­
efficients. (There is a brief calibration discussion in Appendix 
A .  ) An improved knowledge of sensor coefficients, of course, im­
plies an improved alignment capability. The precise feasibility 
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of this calibration and the operational restrictions required to  
achieve it w i l l  be revealed only by a detailed analysis of speci­

fic situations. This is not considered further here. 

Let us  consider, by means of a simplified example, an 

additional measurement which does make it possible to decrease 

the alignment uncertainty of each system. (Because each missile 

is likely to be separately targeted, an improved composite esti­

mate of misalignment is valueless unless it provides the means to 

upgrade each system's alignment. ) Consider the plane case of 

Figure 4-2, where each system's 'misalignment is described by ai. 

Although o1 is not a physical observable, w e  wish to  reduce 

its variance by measurements additional to  those of the vector. 
The additional measurement w e  choose is the 8i-1, i between two 

systems'  independent indications of v. Note that i f  n is even, 

only n/2 additional measurements a r e  implied. These measure­
ments a r e  between missile systems, not between the missile and 

a master o r  missile and the independent frame. When the mis­

siles a r e  close together, as  in a magazine, this angle may be r e ­
latively easy to  measure. We consider only the pair of systems 

shown in Figure 4-3 and assume the a1 and Q2 have a known cova­

riance matrix and a zero mean. The measurement of 8 is im­

perfect, being corrupted by additive noise v of zero mean value 
and known variance (3 . v is independent of CY^ and . 

Prior  to measuring 8, our best estimates of CY 1 and CY 
2 

a r e  zero (their means) with e r ro r s  in these estimates whose 

variances a r e  (3 and o (the variances of the alignment e r ­
ff2 

A
rops).  After we measure 8 and create new estimates 61 and a2 

of CY^ and , the variances of the e r ro r s  in our estimates of the 

misalignments a r e  given by the results of Appendix D as  
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Figure 4 - 3  Definitions of Angles for Example of One System-Pair 
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The measurement of 8 is seen to provide an improved estimate 

of the misalignments cri.of each system relative to the vector. 

The actual estimator for oi is found in Refer.ence 4. We have 

merely shown here the reduced variances of the e r r o r s  in the 

estimates of misalignment provided by a measurement of 8. 
Note that if the measurement noise variance (5 becomes too 

V 
large, the measurement loses its effect. W e  plot D-9 and D-10 

in Figure 4-4 fo r  the special case (5 
2 = (5 = (5 . For systems
@1 ‘‘2 

with equal variances the largest possible improvement in the va­

riance of CY.is seen to  be a factor of two. Whether o r  not this im­
1 

provement warrants implementation of the measurement of 8 and 
Athe computational routine which derives 0, and a2 is a judgment 

which cannot be made here.  

In summary, this section has shown that multiple inde­

pendent measurements of a single vector allow an improved es­

timate of the magnitude of the vector to be simply obtained. 

These measurements do not provide a corresponding simple im­
provement in the alignment of each measuring system relative 

t o  the vector. Additional measurements which relate the systems 

by pairs do make possible a significant alignment improvement 

for each system relative to  the vector. 

4. 	3 A Naval Sil.aation 

The Navy’s constant emphasis on reducing pre-flight 
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Figure 4-4 Variance of Error in Estimate of Misalignment 
as Function of Relative Measurement Noise 
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alignment times for carrier-based aircraft has resulted in two 
rather operationally unique alignment techniques. These tech­

niques a r e  known as  the "Transfer Align" and the "Insertion 

Method. 

The present alignment of an aircraft inertial system at 

sea  is a two-phase procedure; first, the system must be warmed 

to i ts  operating temperature; and secondly, the alignment is 
achieved by gyrocompassing (which here  means tracking the ho­

rizontal component of earth ra te  from a pre-leveled platform; 

azimuth coupling is achieved via small  platform tilts). The to­
1 1  l lt a l  t ime required for the two-step process is the ready time. 

Personnel of the U. S, Naval Avionics Facility (Indianapolis) 

have expressed the opionion3' that the ready t ime for gyrocom­

passing in a parked aircraft "probably will never be reduced to 
less  than 15 o r  20 minutes. ' I  At least half of this t ime period is 

devoted to gyrocompassing, during which the aircraft  must be 

parked on the deck with uninterrupted power and reference signals. 

The length of t ime that the aircraft cannot be moved is consiiered 

a serious deck problem. 

The insertion technique was proposed as  a means of r e ­

ducing the overall ready time. In this scheme, a thermally sta­

bilized, pre-aligned system is brought from some remote loca­
tion and inserted in the aircraft30' 31 ; the dependent frame, in 

,other words, is portable. Rather than aligning the dependent 

system on a time-constrained basis, it has been continuously 

gyrocompassing or  navigating and its alignment has been carefully 
trimmed by comparison with SINS. (SINS is the intermediate 

reference frame aboard naval vessels. ) The problem of aligning 

in a short t ime in the face of disturbing base motions has been 

traded for  the strictly operational problems of hand carrying a 

system to the flight line and installing it in an aircraft without 

introducing severe thermal, mechanical o r  electrical transients. 

That this latter procedure can be consistently accomplished in a 
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short time has not, to this author's knowledge, been proved. It 
is, nonetheless, a very attractive possibility. Removal of the 
t ime constraint on alignment should permit greater gyrocompass­
ing alignment accuracies with the same basic equipment. 

The transfer align method reduces only the alignment time; 
the permanently installed aircraft system must still  be brought to  
operating temperature. This method employs an active transfer 
referenc'e frame (Section 2 .2 .  4) which is pre-aligned relative to  

SINS byathe techniques of Chapter 111. The contractual transfer 
align effort32 in suppoct of the F- 111B aircraft inertial naviga­
tion system has chosen to  use  self-gyrocompassing of the trans­
fer system with the assistance of SINS data. The transfer system 
is, therefore, an intermediary between SINS and the aircraft sys­
tem; it may be thought of as an additional master system. Once 
aligned, the transfer system is carried to the aircraft (operating 
as a precision navigator on its own battery power) and attached 
to an external reference surface. Once mechanically attached, 
the alignment of the aircraft system is accomplished in less  than 
one minute30a 32 by means of a technique such a s  gimbal angle 
matching. 

In both the insertion and transfer align s'ystems, the basic 
means of transferring alignment from one system to another 
(See Figure 2-1)  is still chosen from those enumerated in Chapter 
111. But the emphasis is heavily on time. Time and accuracy 
a r e  closely intertwined in this gyrocompassing mechanization, 
whereas the t ime scale is greatly reduced with several  other 

alignment techniques . 
The insertion and transfer techniques attack the t ime pro­

blem in distinctly different ways. The insertion method makes 
the t ime available for slow gyrocompassing by aligning completely 
"off line. The transfer technique uses an inherently rapid align-

I tment transfer "on line. The rapid techniques (i. e . ,  gimbal angle 
matching and optical comparison) require proximity between the 
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master and slave to  eliminate base flexure and/or range problems. 

A preference for one technique over another i s 'more  likely to  res t  
on operational considerations than on purely technical merit.  
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CHAP-TER V 

SUMMARY AND RECOMMENDATIONS 

5 . 1  Summary 

This study has attempted to develop a unified analysis 
of the alignment problem, with particular emphasis on the 

problems related to alignment on a moving base. The analysis 
facilitates a comparison and evaluation of the fundamental 
limitations of seemingly distinct techniques. It has described 

all alignment measurements a s  measurements of a vector 
quantity. Furthermore, it has demonstrated significant 

1 1  I '  I 'distinctions among measuring a vector, measuring a vector's 
magnitude, " and "measuring a vector's direction, ' I  where only 
the latter is of ultimate significance to the alignment problem. 
The fundamental inability of a system of sensors to indicate the 
direction of a vector has been reduced in all cases  to an equiv­
alent angular uncertainty. This uncertainty was shown to be a 
useful figure-of-merit for comparing systems of sensors.  
Angular deviations of the measured vector for a desired nominal 
direction have been ascribed to vehicle motions relative to the 
earth and flexibility of the vehicle structure. The combined 
effects of sensor imperfection and base motion represent the 

,
fundamental limitations on moving base alignment. 

It was desired that the basic figure-of-merit chosen 
for  evaluating misalignments be insensitive to coordinate f rame 
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transformation, thereby rendering system-level comparisons 
independent of system geometry. The magnitude of the whole-

angle rotation between coordinate f rames  met this requirement 

and also enjoys other important properties. For example, the 

magnitude of a rotation specified by the arguments of the princi­

pal direction cosines is independent of the skewness of the 
coordinate frame, and the magnitude of a rotation specified by 

Euler angles is almost completely independent of the order 
of the rotations. The whole-angle concept made feasible a 
simply expressed evaluation of the sensitivity of misalignment 
to the angle between the two required vector inputs. In order to 

facilitate the adaptation of results expressed in t e r m s  of more 
familiar rotational parameters, the whole angle magnitude was 

developed in t e rms  of many of these parameters.  

The importance of distinguishing between magnitude 

measurements and directional measurements has been demon­

strated in the case of multiple system alignment. Simultaneous 

measurements of a single vector by multiple systems were shown 

not to constitute multiple measurements of a common alignment 

parameter. Therefore, no simple improvement in alignment 

accrued from aligning the systems simultaneously --vs.  aligning 

them separately. It was further shown that any misalignment 
resulting from only one vector measurement is not physically 

observable. Viewing the alignment problem as a vector-direction­

indication process was crucial to these deductions and to 

suggesting an additional measurement which both renders the 
misalignment observable and introduces a useful redundancy, 

The relative advantage of this measurement was calculated, 
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The utility of the unified theory of alignment as an 
analytical tool was demonstrated by application to  seven distinct 
alignment measurement techniques drawn f rom the literature. 
In addition to providing a common basis for comparing these 

techniques, it has been shown to be a simpler way of treating 
old problems (particularly gimbal angle matching). It also 
serves an important purpose beyond analysis. It enumerates in 
detail the basic requirements for alignment, and does this in a 

standard form. A simple test  of suffieiency is thereby available 
prior to any detailed analysis of a newly discovered technique. 

5 . 2  Recommendations 

The non- dimensional analysis of vector measurements 
has resulted in definite guidelines to minimize magnitude-indication 
and direction-indication e r r o r s  a s  a function of instrument 
uncertainties and the orientation of the vector relative to the 

instruments. The results obtained a re  immediately applicable, 
yet this appears to be a profitable area for further study. 
Consideration of higher order instrument uncertainties is 

certainly appropriate., a s  well as  whether redundant instruments 
(i.e. , a fourth gyro or accelerometer) would contribute 
significantly to a system's alignment capability. Studies such 
a s  this have been made 2 o  where the performance index 
relates to terminal navigation e r ro r ,  but not, so  far a s  this 
author knows, where misalignment is the figure-of-merit. 

Another a rea  of possible study relates to the 
calibration problem. In a crude sense, at least, the calibration 

' Iproblem may be viewed as the inverse'' of the alignment problem. 
That is, for alignment it is assumed that one has the best possible 
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knowledge of his instruments and seeks to  ascertain the direction 

of a vector (sometimes with the help of magnitude measurements). 

For calibration, on the other hand, it is assumed that one has 

excellent knowledge of a vector and seeks to ascertain by means 
of this vector a detailed knowledge of his instruments. For 

those cases where the misalignment angle is a physical observ­

able during calibration, certain geometrical and analytical formu­

lations of this thesis ca r ry  over directly to the calibration problem. 

The extent to  which these formulations aid an understanding of 

the calibration problem is of interest. Another calibration 

study was suggested in Chapter IV. It w a s  shown there that it 

is relatively simple to obtain improved knowledge of a vector 's  
magnitude when the vector is measured simultaneously by several  

systems. The possibility of using this information to update one's 
knowledge of certain sensor coefficients appears to this author to 

be.worthy of investigation. The degree to which this updating 

improves one's ability to align each system is the performance 

index of interest. 

Finally, the author adds his voice to those who have 

previously emphasized the need for  the improved availability of 

data concerning vehicle motions and descriptive models of this 

motion. The f i rs t  requirement for a detailed dynamic study of 

any of the techniques described in this thesis is a set of 

representative models for motion of the various vehicles relative 

to the earth and for the relative linear and angular structural 

vibrations between inertial system locations. 
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APPENDIX A 

Instrument Example 
The Linear Accelerometer 

To clarify the definition of various instrument uncertain­
ties, consider a simple linear accelerometer. 

SENSITIVE AXIS 

Point X is the center of mass  of the "proof mass.  I '  Point P is 

fixed in the case. The proof mass  is mounted so a s  to have only 
-. 

one degree of translational freedom. 1 is a unit vector parallelsa  
to the axis of translational freedom and'defines the sensitive axis 
of the accelerometer. The output indication of the instrument, xi' 
is made proportional to the displacement of the proof mass rela­
tive to the case along isa. 
Let m = the mass  of the proof mass.  

k = the elastic coefficient of the spring. 
c = the damping coefficient.-
f = the non-field (i.e. contact) specific force acting on the 

instrument. 
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- -  

-- 

dp = the derivative operator d t  -

and write the governing equation 
2 c  k

(p + m p + g )  xi = - f '  1sa 

In the steady state for constant f 

where x. (0) is the zero setting of the scale. Choosing the
1 

nominal value x. (0) = 0 permits x. (0) to represent directly any
1 1 

uncertainty in the scale zero. If the elastic coefficient of the 
spring should be capable of randomly varying by an amount Ak 
but the mass m remains well known. 

m A k  -
xi = - - ( 1  --k--)f.i­k sa + x.1 ( 0 )  

The foregoing equation describes an imperfect sensing mecha­

nism which converts an input quantity of one set  of dimensions 

(force per  unit mass)  to another (displacement). The uncertain­
ties in this conversion a r e  inherent to the transducer action 

Hence the nomenclature ''transducer uncertainty"referred to lsa. 

to denote imperfections in knowledge of the basic conversion 


process. 


Normalizing the steady state equation for unity gain 
-Ak - kx::: = -k xi = - ( 1  - k ) f '  1 sa  + -m X i ( 0 )i m 

and comparing with Equation 2.4- 55, the following identifications 

may be made 

a0 = bias = -m 

al = scale factor = 1 --Ak 
k 

A kAa 1 = scale factor uncertainty = k 

Under automatic operation which, for example, constrains 

1x:I = I Tlin order to place Tsa parallel to?, the transducer 
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uncertainties a0 and A al wi l l  cause the angle between T and 1 sa 
to be non-zero. 

Sensitive axis uncertainty problems arise simply because 
the accelerometer is typically a sealed unit. This requires 
knowledge of 1 to be transferred to the case exterior as, for sa 
example, a scribed line. If the scribed line and i- a r e  skew,sa 
the sensitive axis uncertainty numerically equals the skew angle. 

Under automatic operation with no transducer uncertainty,-
lsa can be made exactly parallel with the vector input 7. To an 
external observer, however, the indicated vector direction is 
given by the direction of the scribed line. When the external 
observer role is assumed by the platform upon which the ac­
celerometer is mounted, the platform becomes aligned imper­
fectly in spi te  of perfect transducer behavior. 

In summary, sensitive axis uncertainty is measured from 
-
1 to the scribe mark while transducer uncertainty is measured 
sa - -

from the vector input, f ,  to lsa. The total indicated misalignment 
is measured from f to the scribe mark. 

CY = total angular indication e r ror .  

=CY sa angular indication e r ro r  contribution of sensitive 
axis uncertainty. 

= cy t angular indication e r ro r  contribution of transducer 
uncertainty. 
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To further distinguish between transducer uncertainty and 

sensitive axis uncertainty, consider the calibration of the linear 

accelerometer. The determination of bias and scale factor r e ­

quires precise knowledge of the magnitude of gbut relatively crude 

knowledge of its direction. Conversely, determination of the lo--
cation o f 7  requires precise knowledge of the direction of g but s a  
relatively crude knowledge of its magnitude. To fully calibrate 

an instrument, then, requires complete knowledge of the magni­

tude and direction of the vector used for calibration. Conversely, 

aligning an instrument with respect to a vector requires a complete 

knowledge of the magnitude and direction characteristics of the 
instrument. This contrast is the basis for viewing the calibra­

tion problem a s  the inverse of the alignment problem. 
c 


The determination of a. and a l  involves placing 1 both sa  
parallel and anti-parallel to and taking respective readings 

(xi:;) 1 and (x.:k) Because the magnitude of sensed by the ac­
1 2’ - ­

celerometer varies a s  the cosine of the angle between g and 1sa’ 
an uncertainty in this angle of up to 1 milliradian still guarantees

7
knowledge of the input magnitude to at  least five parts in 10 . a. 
is found from 

(x.*)
1 

+ (Xi>X) 2-- 1 
a O  2 

a n d a  1 from 
(x*:X) - (x*:X)

1 1 1 2a =1 
2 Id 

Thus, very accurate transducer calibration is had in the face of 

crude angular alignment. 

Having ao, the precise direction of lsa is found by rotating- ­
1 until it is normal to g (minimum indicated output). For an sa 
uncertainty (1 0)of 5 x 10-7 I-g tin xi::, a. has an uncertainty 

(1  Dl of 3 . 5  g. 
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This implies that r may be placed normal to 2 within 
sa 

3. 5 x 10- 4  milli radian (or somewhat less  than 0 . 1  a r c  sec). 
An orthogonality accuracy of 1 milli radian can be had for a 
magnitude uncertainty of only 1 part in 1 03. Placing rsanormal 
to 5within such tolerances is useful only if  the direction of g ( o r  
its normal plane) is known at least as accurately, for only by 
reference to this direction can i' be located meaningfully.sa 
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APPENDIX B 

A CERTAIN EVALUATION OF THE EQUATION 

A2 = B2 + C2 * 2 B C c o s q  

From the equation 

A2 = B2 + C2 i 2 B C c o s q  (B-1) 

under the conditions that q is statistically independent of B and C 
and further that 

q2 (B-2)  

where q1 and q2 are  independent variables, each uniformly dis­-
tributed on the interval 0 - 2 n ,  we wish to evaluate the mean (A)-

2and mean-square (A ) values of A for B and C fixed. 

The probability density function for q is given by 

The mean of A is derived from 

-A =  f"A f ( q ) d q  
-2n 

2n  
= / B2 + C2 f 2 BC cos qi f  (q)d q (B-4) 

-2nJ J  
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In order  to  obtain an  integrable form.of (B-4), the integral is first 

treated in the following manner 

Suitable changes of variable reduce (B-5) to (B-6). 

(B-6) 
If (B-4) is treated as 

2 \ 

+ C f 2 BC COS q (2n + q )  d q
4n -2n  

+ r / B 2  + C2 f 2 BC cos q I (2n  - q )  d q 
(33-7) 

the substitutions (2n+q) = q' and (2n-q) = q" in the first and second 

integrals of (B-7) respectively yield 

A- = 2 fnq/B2+ C2 
=k 2 BC cos q ' d q  

2n  0 

Equating (B-6) and (B-8) requires 

+ C2 * 2  BCcosq'dq = 

0 0 

which by comparison with the right hand side of (B-8) gives the 

desired result 
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(B-10) 

The form of the integral (B-10) is elliptic. By appropriate 

changes of variable (B-10) can be reduced to a tabulated form. 

For an example, consider the case where the plus sign 
occurs under the radical. The integral may be spli t  as follows 

-

A = -&{ /E2 + C2 + 2 BC cos q ' d  q 


i (B-11) 
2n  

+ r / B 2 t C  
2 + 2BC cos q ' d q  

Operate on the second integral of (B-11) by f i rs t  making the change 
of variable q = (27r - n')  and then interchanging the limits of 

integration. The two integrals of (B-11) a r e  then identical with 
the result 

(B-12) 

Equation (B-12) also results from manipulations on (B-10) when 
the minus sign occurs under the radical. 

If the substitution p = q / 2  is made in (B-12), the tabulated 
form of (B-13) is obtained. 

- 2
A = ­

7r 

(B- 1 3 )  
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E is the complete elliptic integral of the second kind” with 

argument k2 

k2 = 	 4 BC (B-14) 
(B + C)2 

The evaluation of the mean-square value of A follows much z 
more directly. A is defined by 

J 

- 2 7  
2n 

= 1(B2+ C2* 2 BC cos q)f ( q )d q  (B-15) 

- 2 7  

which is simply integrated with the result 

(B-16) 

The results (B-11) and (B-14) a r e  for B and C heuconstant .  
c 

If they are  random variables, the dependence of A and A 2 on the 
statistics of B and C would be calculated from (B-11) o r  (B-14) 

respectively. 
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APPENDIX C 

AN INTERPRETATION OF STATISTICS ASSOCIATED WITH 

A TRIAD OF SENSORS 

Relative to measuring a vector with a t r iad of similar 
instruments, we may make the interpretation of Figure C- 1: 

instrument uncertainties result in a three-dimensional uncer­
tainty in the location of the t i p  of the vector T. The statistics of 
this uncertainty relative to the tip of the vector a r e  obtained by 
affixing the x, y, z coordinate set  to the tip of the vector such 
that it is a translated (but not rotated) representation of the x', 
y l ,  z '  frame. If we now assume for convenience that the instru­
ment uncertainties of Equation 2. 4-60 a r e  normally distributed 
with zero mean, the statistics along x, y, and z a r e  normally 
distributed with zero mean and standard deviations 

J " 1 

. 

2 2 Iv cos(J =pa2+ $ 2  0- 2 
Y 0 Aa 1 

Note that although the statistics of each instrument a r e  identical, 
the statistics of each axis a r e  generally non-identical. This 
phenomenon results from scaling of the scale factor uncertainty 
contribution by the projected magnitude of the measured vector. 
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Figure C-1 Statistics Associated with a Triad of Sensors 
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It is of great interest tomany people to plot contours of 
constant probability density in or der to exploit certain geometri­
cal interpretations of probability. Unfortunately, this problem 

does not lend itself to this technique. The contours of constant 
probability density in three-space a r e  described by 

2 2 2 
- + Z- + - = Const.X Z 

2 2 2
CJ

X 
0Y 0

Z 

The solid body described by C-2 is an ellipsoid, but one whose 
shape varies as its center is moved in three space. It becomes 
an ellipsoid of revolution if and only if  two of the three direction 
cosines of the vector a r e  equal. It becomes spherical if  and 
only if all three direction cosines a r e  equal. This, of course, 
only occurs when the vector is geometrically centered in the 
octant. There a r e  exactly eight positions of the vector in all of 
three- space for which the contour of constant probability density 
is spherical! It should be obvious that for the majority of possible 
vector orientations with respect to the triad, the contours a r e  not 
simple surfaces of revolution. 

Results such as 2.  4-66 a r e  obtained without full calculation 
of the three dimensional e r r o r  probability density functions for 
a l l  vector orientations. The approach taken there is simpler and 
more direct. If' one were to develop the three-dimensional pro­

bability density and evaluate the statistics of a vector t ip 's  loca­
tion, great care would have to be exercised to see that the result  
obtained related to directional uncertainties and not just the 
' Itotal uncertainty'' in measuring a vector. 
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APPENDIX D 


OPTIMAL ESTIMATION APPLIED TO MULTIPLE SYSTEMS 


Consider two independent random variables CY and CY 2, 

each of zero mean and respective variances o2 and (J 	
2 . 
"2 

By one measurement involving CY 1 and CY2 we can make better 
A A

estimates CY, and CY 2 of cy1 and cy2 such that our estimation e r r o r  

is improved 


2 A  cr (a,-a1) 5 (J 
2 

"1 

even in the face of measurement noise. This is done here by a 


straightforward application of optimal estimation theory. We 
9 use here the formulation and notation of Bryson . 

The physical measurement is 


= e + V - = "  y C Y 1 + v  

= H x + v  

where the noise in the measurement is v and we have defined 


v is assumed independent of 5 with zero mean and known variance 
2 

c r v  . Using the known relation of 8 to x(Equation D-3), the known 
statistics of v, an initial estimate of2, and the known uncertainty 
in this initial estimate, one can obtain an improved (in the lea'st 

A squares sense) estimate of -x (Reference 4). 
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The covariance matrix of the e r r o r  in the estimate o f 2  


is given by 


where E i s  the expected value operation. P is given by 

P = M - M H ~( H M H ~ + R ) - ’ H M  (D-6) 

where M is the covariance matrix of our initial estimation e r r o r  
.- - 7  

2 
(5 

“1 
O I (D-7) 

0 2
L 

(5“ 2  I 
and R is the covariance matrix of the measurement e r ro r .  

2 2R = E ( v )  = (5
V (D-8) 

Straightforward algebra yields for the variances in the e r r o r s  in 


and 


2 
(5 2( B 2  - 0,) (5 

@ 2  

1 ( D - 9 )  

2 

(5 
V+­ 2 

0­


@l 

1 ­ 

2 2 

(5
4 

(5 
V 

l +  -I-2 
+ - 2 (D-10) 

(5 (5 

“2 @2 

The results D-9 and D-10 f i t  the restrictions D-1. 
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